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SPATIAL STRUCTURE OF THE POLYAKOV LOOP IN EXTERNAL
CHROMOMAGNETIC FIELD IN LATTICE SU(2) GLUODYNAMICS

Spatial distribution of Polyakov’s loop in 3+1 dimensional SU(2) lattice gauge field
theory is investigated in the presence of constant external Abelian chromomagnetic field
H at finite temperature. The external field corresponds to the third group generator and

is directed opposite X axis. Monte-Carlo simulations are performed on the 2x16° lattice
at f=3, and various values of flux of the external field. The flux on the lattice is

introduced through the so-called “twisted” boundary conditions. These conditions are the
modification of the standard periodic boundary conditions and allow introducing an
additional flux of the external field. The computations are performed with graphic
processing units, the computer program is written in C++ language using OpenCL. It is
discovered that in the presence of the external field the Polyakov loop has a non-trivial
periodic spatial structure that is in contrast to a rather uniform distribution in the field
absence.

Keywords: lattice gauge field theory, chromomagnetic field, “twisted” boundary
conditions, Polyakov loop, SU(2) gluodynamics.

B 3+1 SU(2) pemréroyHoii KaJJUOPOBOYHON TeOPHH MOJIS NPH KOHEYHOI TeMImepaType
H3ydaercsi INPOCTPAHCTBeHHOe pacnpeaenenne mnerau IloasgskoBa B MNPHCYTCTBHH
NOCTOSIHHOTO0 BHeHmHero adeleBa XPOMOMATHHTHOro mnoast /, COOTBeTCTBYIOLIEro
TpeTbeMy TeHepaTopy Tpynnsl M HampaBJeHHOro mnpoTuB ocu X. Monrte-Kapio

MOXeIHPOBAHME NPOBOAMIOCH HA peméTke 2x16°nmpm f=3 u npu pasHBIX 3HAYEHHSX

NMOTOKA BHENIHEro MOJisi, KOTOPBIii BBeJeH HAa PemIETKY ¢ MOMOIILI0 TaK HAa3bIBaeMBIX
«MOAKPYYEeHHBIX» TPaHHYHBIX YCJHOBHii. JTH YycJIoBUS SBIAAKTCA Moaumpukanmuei
CTAaHAAPTHBIX MePHOAHYECKHUX TPAHMYHBIX YCJIOBHii, MO3BOJsIIOMEl BBECTH Ha PemETKY
JONMOJIHHTEJNbHbIi  MOTOK  BHEIIHEro  MNOJsi. BpIYHMCIeHHsT  NPOM3BOAMJIHNCH €
HCHOJIb30BAHHEM BHA€0KAPT, KOMNbIOTEpPHAas NporpaMMa HanmucaHa Ha sa3bike C++ ¢
ucnoab3oBanuem OpenCL. OOHapyskeHO, 4YTO NpPH HAJUYUMH BHEMIHEr0 MOJSA
pacnpejaesenue neTJn MonskoBa umeet HETPUBHAJIBHY IO NepHoOIHYECKY IO
NPOCTPAHCTBEHHYI0 CTPYKTYpPY, B TO BpeMsi KaK B OTCYTCTBHE BHEIIHEro moJsi eé
pacnpejejieHne cKopee 0JHOPOIHO.

KawueBble ciaoBa: pemérouyHas KaauOpoBOYHAs TEOPHsS IOJSA, XPOMOMarHMTHOE IOJIE,
«IMOAKPYYEHHbIEY» IpaHUUHbIE ycioBus, netias [lonskosa, SU(2)-rawooquHaMuKa.

B 3+1 SU(2) rparkoBiii kaniépyBaabHiii Teopii moast npu ckiHyeHHili TemmepaTtypi
BMBYA€EThCA mNpocTopoBHii po3noain meryai IlonsikoBa mnpu HasiBHOCTI mocTiiiHoro
30BHIiIHBOro a0ejieBOro XpOMOMATrHITHOro nmoJyast / , BiANOBiAHOI0 TpPeTHLOMY reHepaTopy
rpynu i cnpsMoBaHoro mpotu oci X. MoHTe-Kapigo MmoaenioBaHHSI NPOBOAHMJOCH Ha

rpatni 2x16°mpm f=3 i npu pi3sHHX 3HAYEHHSX MOTOKA 30BHIMIHLOrO MOJS, AKHIl GYB

BBeJleHUII 3a JONOMOroK0 TaK 3BaHHUX «MiAKpPyY4YeHHX» rpaHu4YHuX ymoB. Ili ymoBu €
Moandikalicl0 CTAHAAPTHUX NepPiOAMYHUX TFPAHHYHHX YMOB, sIKa J03BOJISIE BBeCTH Ha
IpaTKy A0AATKOBHUIl MOTiKk 30BHiIHBLOro moJisg. Po3paxyHku mpoBOAUIHCS 32 JONOMOIOI0
BigeokapT, KOMI’IOTepHAa nmporpamMa Hanucana MoBow C++ 3 Bukopucranuam OpenCL.
BusiBieHo, mO0 3a HasABHOCTI 30BHIMHBLOro moas posmoxain merai IMoasxkosa Mae
HeTPUBiaJbHY NepiogMYHY HNPOCTOPOBY CTPYKTYpPY, B TOHl 4ac AK 3a BigcyTHocTi
30BHIIHBOrO moJs ii po3moaia ckopim ogHOpiAHUI.

KawuyoBi caoBa: rpaTkoBa KaniOpyBalbHa TeOpis TMoJsA, XpPOMOMAarHiTHe mole,
«migKpydeHi» rpaHu4Hi ymoBH, nmetias [lonskosa, SU(2)-rmrooaguHamika.

-© V. 1. Demchik, N. V. Kolomoyets, V. V. Skalozub, 2013
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Introduction

Interest for studying of quantum phenomena in external magnetic fields is steadily
growing. This is stimulated by increasing of experimental data obtained at modern
colliders of particles and astrophysics observations (see [1, 2] and Refs therein). Modern
experiments demonstrate the importance of accounting for effects related to magnetic fields in
different phenomena of high-energy physics. In this regard, it is reasonable to reconsider
known quantum effects with taking into account the presence of magnetic fields.

One of such phenomenon is a deconfinement phase transition. The Polyakov loop is
the order parameter of it in the SU(N) gauge theories. In continuum limit, it has zero
value in confinement and is non-zero in deconfinement phases. The peak of Polyakov
loop susceptibility considered as a function of temperature corresponds to the temperature
of deconfinement phase transition [3]. The Polyakov loop is sensitive to breaking of Z(N)
center subgroup of SU(N) gauge group [3, 4]. It allows for studying the quark-antiquark
potential as well as other implicit parameters.

There are several basic approaches to investigate the deconfinement phenomenon.
Nowadays, the most popular method is Monte-Carlo (MC) simulations on a lattice. It
allows for getting numeric estimates of the quantities studied. In the present paper this
method is applied. At zero external fields, the Polyakov loop properties are well investigated
in the literature [3-5]. But this is not the case if the field is switched on. Even the influence of
the field on the temperature of the phase transition is not settled finally [6].

As shown in literature, the value of the Polyakov loop in SU(2) gauge theory
decreases with increasing of the applied external field. This means the increasing of the
temperature of deconfinement phase transition with increasing the value of the strength of
external field [6]. The opposite behavior is detected in the SU(3) gluodynamics.

The present paper is devoted to investigation of influence of the external Abelian
chromomagnetic field on the Polyakov loop. We study the spatial distribution of the
Polyakov loop for different values of field strengths at finite temperature. The values of
the loop obtained from Monte Carlo simulations are averaged over the plane
perpendicular to the external field direction. The distribution of this quantity along the
field axis is the main object investigated.

Basic theory

Below, the standard lattice Wilson action for SU(2) lattice gauge theory
p
Sp=% % SReTr(1-U,,(n)) (1)

ned u<v
is used. Here, U ,,(n) = U, (n) U, (n+ p) Uu+(” +9)U," (n) is a plaquette variable, i is
the unit vector along u direction, u= {1,2,3,4}, u=4 corresponds to the Euclidian

time direction, f =4/ g2 is the inverse coupling constant, / is the 2x2 unit matrix and

summation is performed over all sites of a lattice 4 and over all directions. Variable
U, expresses the gauge field on the lattice,

iA (x)a
Uyx)=e "0, )
where 4, (x) is a gauge field potential in continuum theory, a is a lattice spacing.

To introduce the external field, twisted boundary conditions are used [7]. They read
Uﬂ(nx,ny,Nz,n,):QUﬂ(nx,ny,O,nt), 3)
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d- i¢/2, —ip/2 :2;
o) :{ lag(e e ),,u (4)

I, u#2,
N _ measures a number of lattice sites in z direction; ¢ is the flux of the external field.

This means that the external constant chromomagnetic field is H= (— H,0,0). If =0,

then these boundary conditions restrict to the usual periodic ones. The connection
between flux and field strength is the following

H=2 (5)
a
The relevant quantity, the Polyakov loop, is defined as usually [5]:
Nt—l
P(ii) = Tr {HUA; (m, 1)} (6)
=0

which is discretized version of its definition in continuous theory,
P(¥)= Texp[ig{)dr AO(TC,T)], (7)
T denotes time ordering. The equation (6) is a trace of the ordered products of all time-

directed links corresponding to the space point 7 . It gives a closed loop due to the
periodic boundary conditions in the time direction.

Simulation results

In this investigation the standard MC lattice simulations are performed. To update a
lattice the multi-hit heat-bath algorithm is used (the number of hits 10 is taken).
Pseudorandom numbers are produced with RANLUX3 generator.

Production of pseudorandom numbers, updates of the lattice and measurements are
performed with graphics processing unit (GPU). Averaging over a configuration is also
performed with GPU. Averaging over run is performed with central processing unit
(CPU). Computer program is written in C++; the GPU kernels are written in Open
Computing Language (Open CL). The trivial parallelization is used: all the GPU
procedures are performed in parallel, but there is not parallelization between GPUs.

All calculations are carried out with double precision. The simulations are
performed with GPUs of HGPU cluster based on nVidia GeForce GTX 560 Ti, AMD
Radeon HD 7970 (Tahiti), HD 6970 (Cypress) and HD 5870 (Cayman).

All the simulations are performed on the 2 x16> lattice at £ =3 and flux ¢ up to
0.15. In this case lattice spacing equals to a = 0.0940246 fm. The relevant quantity is
Polyakov loop for every x coordinate. After 300 thermalization sweeps the measured
value is obtained as an average over 500 configurations. Nine bulk sweeps are performed
to decorrelate configurations used in measurements. There are up to 18500 runs performed
in the presence of chromomagnetic field and up to 46000 ones in the absence of it.

Within one sigma accuracy it is obtained that the Polyakov loop in the presence of
non-zero chromomagnetic field has some periodic structure. It can be seen that the field
brings a decrease of the variance of the loop. Also, we observed a non-monotonic
behavior of the mean value of the loop as function of H .

To investigate the shape of the distribution of the measured quantity the standard

;(2 fit method is used. Every data set is fitted by a straight line corresponding to the
mean of these data, by a single sine function and by combinations of two sine functions.
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To avoid edge effects in fit, the data are periodically extrapolated from both sides. In fact,
three periods along x axis were used in the fit. Fit results are presented in Table 1.

The data in columns are the values of minimal ;(2 corresponding to the four values of
@ investigated and to the functions tried. In the gray cells the functions used are placed:

e fi(x)=M, M isthe mean value of the Polyakov loop over interval of x;

o f,(x) :M+asin(27r§+x0);

. x . X
o fi(x)=M +a, s1n[27r?+le+a2 51n[27z?+x2}

1 2

o [i(x)=f1(x)0(b, —x)+ [, (X)[1-0(b, —x)]0(b, —x)+ f,(x)[1-0(b, — x)],
. X . X
f,(x)—alsm£27r?+xlj, f,,(x)—azsm(27zX +x2j,

1 2
where 6(x) is the Heaviside theta-function, 8(0) =1.

Table 1
The fit results; @y = 0.000591195
Function a

0 Po 1690 2569,
f1 0.1364 11.83 20.31 13.7
o 0.08913 8.270 13.42 11.35
f3 0.06628 5.836 11.13 9.729
f1 0.07405 2.843 4.616 3.923

The last function means that the period of resulting function is divided by two
intervals, and the data in each interval are described by different sine-function; b, and b,

are the points of the connection of these curves. The minimal ;(2 values presented in the
Table 1 correspond to the one period of data.

It can be seen from Table 1 that in the field presence the best fit function is the
combination of two sine functions in different regions of data. The )(2 corresponding to

this function is in several times less than the one for the case of straight line, so such non-
trivial distribution of the Polyakov loop is more preferred than the uniform one. If the
external field is absent, the best fit function is superposition of the sine ones. However,
for this case all fit functions give almost the same y° because of a high variance, so all
of them describe the data almost equally well. The data sets and the corresponding best
fits are shown in Fig.1.

The space structure of the Polyakov loop may result in a chromoelectric field in the
deconfinement phase. To our knowledge, this interesting phenomenon was not discussed in
the literature. It requires further investigations which are out of the scope of the present paper.

Conclusions

In the present paper, a constant chromomagnetic Abelian field is introduced on the
lattice through the twisted boundary conditions. The distribution of the Polyakov loop
along the field direction is investigated for different values of field flux. It is observed
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Fig. 1. Data sets for zero and non-zero fluxes and corresponding best fit curves:
a) p=0b) p= 256§00 . Error bars correspond to the 68% confidence intervals.

that in the field presence the Polyakov loop has a non-linear structure, within one sigma
accuracy. If the external field is zero, such structure is not elucidated. The data fit shows
that the distribution of the Polyakov loop is preferably described by a combination of two
sine functions in two different intervals of data along the axis investigated. This
observation is a signal of interesting new features of the deconfinement phase. These will
be investigated separately.
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