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MATCHING OF STEPHANI AND DE SITTER SOLUTIONS
ON THE HYPERSURFACE OF CONSTANT TIME

The spherically symmetric solution for perfect fluid with homogeneous energy
density and inhomogeneous pressure is considered. This solution is known as Stephani
solution. It is reobtained by a mass-function method. Also, the meaning of arbitrary
functions which are present in the solution is discussed. The matching of this solution
and the de Sitter is done on a hypersurface of constant time. The matching is done with
the Lichnerowicz — Darmois conditions. The coordinates of the de Sitter solution are
taken in a general form as arbitrary functions that depend on Stephani’s time and the
radial coordinate. The matching is done both for the special cases of the flat, open, and
closed Universe and for the general case, which does not concretize the type of curvature.
The equality of energy densities and the abrupt change of pressure are observed on the
matching hypersurface. Also, restrictions for arbitrary functions (coordinates of de
Sitter solution) are found.

Keywords: perfect fluid, Stephani solution, de Sitter solution, Lichnerowicz - Darmois
conditions.

PaccmarpuBaercs cheprHyeckH CHMMETPHYHOE pelieHHe N5 HAeAJbHON JKHIKOCTH €
O/IHOPOJHOW MJIOTHOCTBI JHEPruM H HEOAHOPOJAHBIM [aBJIeHHeM. JTO pelleHHe -—
u3BecTHoe pemeHue CtedpaHuu. ITO pelmieHHe MOJy4YaeTcss HOBTOPHO ¢ MOMOIIbI0 MeTOAA
MaccoBoii ¢yHknmu. OOcyxkgaercs CMBbICA NPOU3BOJbLHBIX (yHKHHIA, KoOTOpbIe
NPUCYTCTBYIOT B pemeHud. CmuBKa 3Toro pemeHuss ¢ pemenuem jJe Currepa
BBINMOJHSAETCS N0 THNEePHNOBEPXHOCTH MOCTOSIHHOro BpemMeHH. CIIMBKAa NPOM3BOAMTCS C
nomMomb ycaopuii Jluxueposuua-Japmya. Koopaunarsl pemenus jge Currepa
BbIOHpalOTCca B 001eM BHJAE, KAK NPOHM3BOJbHbI¢ (PYHKIHH OT KOOPAMHATBHI BPEMEHH H
NPOCTPAHCTBEHHON paauaabHOi koopaAuHAaThHl pemeHus Credpanu. CluUBKa BBINOJHACTCS
IJISE YaCTHBIX CJy4aeB MJOCKOWH, 3aKpbITOii, OTKPBLITOH Bcenennoii u nas odmero ciayuas,
B KOTOPOM He KOHKpeTH3upyercs KpuBu3Ha. Ha rumepnoBepxXxHOCTH CIIMBKH
Ha0J101aI0TCS1 PaBEHCTBO NMJOTHOCTell HepPruii M CKa4yoKk AaBJeHHSA. YCTAHABJIHBAKTCH
OrpaHMYeHHUs HA MPOM3BOJIbHbIe QYHKIMH — KOOPAMHATHI pemeHus ae Currepa.

KawoudeBble cioBa: mpeanbpHas XUAKOCTh, pemeHne Credanu, pemenue ae Currepa,
ycnoBus Jluxueposuda — Jlapmya.

Posraspaerbea cdepHYHO CHMETPHYHMI PO3B'A30K s igeanbHol piaunm 3
OAHOPiAHOW TycTHHOIO eHeprii Ta HeoaHopigHuM THckoM. lledi po3B's30k - Bigomuii
po3B'sa3ok Credani. Leli po3B’si30Kk BCTAHOBJKETHCH NMOBTOPHO 32 JA0ONOMOIOK MeTOJa
MacoBoi ¢yHkunii. OOropopwerbcss 3HaAa4YeHHsA JOBiAbHUX (QYyHKNiii, ki npucyrHi y
po3B’saA3Ky. 3MMBKAa UbOro po3B'si3ky 3 po3B'sa3koM ae Cirrepa 3ailicHOeETbcA Ha
rinepnoBepxHi mocTiiinoro 4acy. 3muBKa 3AilCHIOETHCS 3a JA0NOMOIoKW YMOB
JixnepoBiua-{apmya. Koopaunatu aias po3B’s3ky ae Citrepa o0upawTbes y 3arajbHoMy
BUIJAsAAlI, fAK JOBiNbHI ¢QyHkunii Big koopamHaTH 4Yacy Ta npocTopoBoi pajiaabHoil
kKoopauHaTtu po3B’sa3Kky Credani. 3muBka 3ailicHIOETHCH IJf OKpPeMHX BHIAAKIB
NJI0CKOro, 3aKpHTOro i Bigkpurtoro BcecBiTy Ta aisi 3araJbHOro BHHAAKYy, Y SKOMY He
KOHKpeTU3yeTbcd KpuBu3Ha. Ha rinepnmoBepxHi 3mHMBKH cHocTepiralrbecst piBHiCTH
TYCTHH eHepriii Ta cTpudok TucKy. BcTaHOBIIOIOTHCA 00MeKeHHsI Ha N0BinbHI QyHKuii —
KoopauHaTH po3B’a3ky ae Cirrepa.

Kawuosi cioBa: igeanpHa pigmHa, po3B’s3ok Ctedani, po3B’sa3ok ge CiTtrepa, YMOBH
JlixuepoBuua — Jlapmya.
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Introduction

The most general class of non-static, perfect fluid solutions of Einstein’s equations that
are conformally flat is known as the “Stephani Universe” [1-5]. The spherically symmetric
Stephany solution has been examined in numerous papers. A comprehensive review is
presented in [5]. There are many papers devoted to applying this solution as star models, as
generalization of the FLRW, and as a cosmological model [5-7]. In our opinion, this solution
is attractive for the cosmological model for many reasons. Firstly, it is shear-free and
inhomogeneous. The absence of a shear makes it simple for the cosmological purpose. The
assumption of homogeneity is just a first approximation introduced to simplify Einstein’s
equations. So far this assumption has worked well, but future and modern observations can
not be precise without taking into account inhomogeneity. And due to the fact, that modern
and future observation data become more and more precise and that the smallest deviations
from the standard model can be detected with high level of accuracy soon, makes
inhomogeneous models actual. Secondly, Stephani solution has a general form in contrast to
the FLRW solution where three solutions (flat, open, closed), non-transforming into each
other, exist. Thirdly, the spatial curvature of this solution depends on time only via an
arbitrary function, this fact is discussed in [3, §].

The physical interpretation of the Stephani Universe is obscure. It is due to the many
arbitrary functions and peculiar inhomogeneity — inhomogeneity is contained in pressure
(depends on time and spatial coordinates), but density is homogeneous (depends on time
only). It needs matching in order to determine some arbitrary functions. May be the main
reason to use this solution in cosmological modeling is the fact that it is the generalization of
the FLRW solution and, in our opinion, investigation of a more general solution is promising.
The solution generalizes not only the FLRW but also the de Sitter solution [3]. In this
connection, the idea to examine the Stephani solution on the de Sitter background looks
reasonable.

In the first part of the artice the solution for perfect fluid with inhomogeneous
pressure (the Stephani solution) is reobtained with the mass-function method [9-12].
Some properties of it are discussed. In particular, we discuss a sense of the arbitrary
functions and transformation to the FLRW and to the de Sitter solutions.

In the second part, the matching of de Sitter and Stephani solutions on the hypersurface of
constant time is done. The Lichnerowicz — Darmois conditions were used. Some consequences
of the matching are discussed.

Mass-function method

The mass-function method essentially simplifies the appearance of the Einstein
equations in contrast to the standard one; it makes them easier for work. The mass-
function was introduced in [9] and discussed in [10-12]. As shown in [9], the mass-
function is invariant and in our consideration may be determined as full energy limited by
some hypersurface of constant time and coordinates. For a spherically symmetric metric:

ds® =e"*dt* —e"*VdR* —r*(R,t)d o, (1)
where do” = d0* —sin’(0)d ¢’ , the mass-function m(R, 1) is:
m(R,t) =r(R,1)(1+e® —e), ()
e’ =e " (R,t), e =e"r*(R,1), (3)
or(R,t) or(R,t)

where #(R,t) = 5 r'(R,t) = R
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

Einstein’s equations with the mass-function have the form:

' 2 170
m =rrT,

m=r’rT',

- ! . ! 7 . 12 (4)
2m' =m®" +m'Q+ 4rir'Ty,
2/ = D'+ r'Q).

Obtaining the Stephani solution

This solution was first found by Stephani [13] as a special example of a space-time
embeddable in a flat five-dimensional space, and later reobtained by Krasinski [2]. We
reobtained this solution with mass-function method.

The Stephani solution is an isotropic solution for perfect fluid with homogeneous
density p = p(¢) and inhomogeneous pressure p = p(R,t) (in spherically symmetric
consideration). The stress-energy tensor for such perfect fluid is: 750 = p(1),
T' =T} =T; =—p(R,t). The Einstein field equations become

m' =r’r'p,
. 2.
m=-r"rp,
! . [; 1~ .y (5)
2m' = m® +m'Q—4rrr'p,
2/ = D' +1'Q

Expressing the mass-function from the first equation of the set and substituting it

into the third one gives

o (1 4
B(—rd)'-i-—r’—Zr'j:O, 6)
p\3 3
from this equation the expression for @ is obtained,

®=Inr'y’, (7
where =/ (t) is an arbitrary function of integration.

The fourth equation of the set (5) gives us the expression for Q:

12
r

Q=In——r, 8
erIZ ( )
where k = k(R) - arbitrary function (prime is used for convenience).

From Eqgs. (1) and (3) the metric is obtained,

2
7

2 2 20702 gp2 2
ds :r21//2 dt” —r*(k'""dR" +do”). 9)
With the expressions (7) and (8) the mass-function is obtained:
2
m=r(l+r’y’ ———). (10)
(A+riy P )
The expression (10) with the first equation of (1.5) gives us
3 2
r 3 2 r
—=r+r —-——. 11
P Vi (11)

It is integrated in elementary functions providing the expression for 7 = (R, ¢)
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I"(R,t) — 2(ek(R)+'7(t) _ é’(t)e*k(R)*rl(t) )*1’ (12)

C)y =y (1) —%p@, (13)

and 77(¢) is an arbitrary function of integration.
Depending on the sign of £'(¢) , the expression (12) gives

r = JC -sinh(k + a), £ >0,
Fl= \/m -cosh(k + ), £ <0, (14)

-1 k
ro=e", =0,

where €’ =4/|{|-e”.

In contrast to the FLRW solution where there are three non-transforming into each
other solutions (flat, closed, open), there is the general solution here with flat, open,
closed solutions as special cases. The existence of this solution shows that the distinction
between the closed and open Universe is not required by Einstein’s theory of gravitation
as such, but is due to the very strong symmetry assumptions that are set into the models
just from the beginning. From (5) it is also possible to obtain the equation that links
density and pressure:

P r(R,1)

3 H(R,1) (15)

P(R,) =—p(t) -

The FLRW and de Sitter solutions as special cases of the Stephani solution

The Stephani solution, as mentioned above, is a generalization of the FLRW solution
and the de Sitter one. When () =0, the Stephani solution is transformed to the flat

FLRW solution. If £ (¢) # 0, the transformation occurs in such a way

. a(t)
H)=0,p()=—2,
) =0,y () =~ o
$(t)=- ! k(R)=1In cotE (16)
a*(t)’ 2’
1 R
)= :k(R) =Incoth—.
¢ 20 (R) 5
The density in the de Sitter solution is p = Lz = const. It can be obtained from Egs. (13, 16):

a,

£ =0:a(t)=e"

__ — r

St = 20 :a(t) =a, cosh o , (17)
1 ot

$(t) = 20 ra(t)=a, smh—aZ .
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

Arbitrary functions and their meaning

The Stephani solution contains four arbitrary functions: k(R), £ (¢), w(¢), n(¢). Also
in our consideration, we do not set the equation of state, i.e. p(¢) is undefined. The

determination of arbitrary functions may be proving to be elusive. It is true, but our
analysis of the solution (9) shows that it is possible to understand their meaning.
The function k(R)may be chosen arbitrary because it leads to a transition to another

2
dk
coordinate system, only. The part (d_Rj dR* =dk’ in the expression (9) is just a
transformation from R to k . The coordinate transformation may be chosen in such a way

that the spatial part of the solution (9) is conformal to one of three homogeneous and
isotropic spaces,

1 .
dk* +do’ =————(dR; +sinh’ (R, )dc” ) =
sinh™(R)) (18)
1 1
=———(dR} +sin*(R,)do’ ) =—(dR> + R ’dc”).
sinz(Rz)( ? (R)de) R32( RO
Chosen 77(¢) is also referring to the coordinate transformation. Thus Eq. (9) takes the form
2
7
dS* =—="—dn* —r’(k"dR* +do?) (19)
ry
where 7 :1.
n 87]

The analysis of invariants of the spatial curvature tensor of the metric (9) shows that
the invariants depend on the arbitrary function £(¢), only. The scalar curvature tensor

and the Kretschmann scalar, for example, are
R =60(2),
R,uvlaR#VAU = 1242 (t)

Thereby spatial curvature depends on £'(¢) only. The type of space (flat, open, closed) is

(20)

determined by the sign of £(¢). So it is possible to assume that () completely

determines spatial curvature. This fact is also discussed in [3, 8].
Thus, y(¢) obtains the meaning of critical energy density. When spatial curvature is

zero, then £'(¢) =0 and from Eq. (13) we have
1
w’ (1) =320 1)

Lichnerowicz - Darmois conditions

The Lichnerowicz-Darmois matching conditions [14] are two metrics
s’ =g, .dx"'dx",
i (22)
dSZ = gwdx”dxv,
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and are said to match across some hypersurface if first and second fundamental forms of
this hypersurface are identical for the two metrics.
The first fundamental form is

dl’ =a,du'du" (i,k =1,2,3), (23)

6 H
where @, =g, &'&), &' =——.
ox'

The second fundamental form is
dl,> = b, du'du”, (24)

where b, =v, EFE, & are tangent vectors to the hypersurface and v* are normal vectors.

Matching Stephani and de Sitter solutions in general case

The matching has been done on the hypersurface of Stephani’s constant time. Time
and spatial coordinate of the de Sitter solution were chosen as arbitrary functions of the
Stephani time and the radial coordinate. Both metrics have been taken in the general form
without more precise definition of their curvature.

The Stephani metric, as mentioned above, is

-2
7

s’ = — dr* —r*(dk* +do?), (25)
ry
. or
where r =r(k,7), v =y (r), 7= Pt
T
The matching is performed on the hypersurface 7 = const. & on this hypersurface is
0 0 0O
= 01 0O 26)
" 100 1 0
0 0 0 1
Normal vectors are found from the equation
v vh =1,
L 27
v,& =0,
The normal vector has only non-zero component
v, =—. 28)
ry
First and second fundamental forms for the Stephani solution are
di, =r’dk* +r’do’, (29)
di’, = r’ydk’ + r’ydo’. (30)
The de Sitter metric is
2
r 1
ds,’ = (1 —— ]dﬂ —~ —dr’ —r’do’, (31)
a, 1 T,
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

/ 3
r.=r(k,7), t=tk,7), a, = N and A is cosmological constant. We do the same

manipulations with the de Sitter metric

~
-~

& = (32)

© o o o
o o WY,

S = o o
- o o o

According to Eq. (27) we have

!

v
Vy = (33)

AP A

t’

JAT = A
2

r

S

5 -

Vi = (34)

where primes denote derivatives for k, 4=1—
a
2

The first and the second fundamental forms for the de Sitter solution are
dl, > =(A"r’= At")dk® +r’do’, (35)
rt'(t”?A=-3r"4" r At'
dl, > == ( A7) dik* + 2

ds2
aﬂz [A—lrlLZ_Atrz A—lrgz_ AtrZ

From the equality of the first and second fundamental forms the following equations cane
be obtained

do’. (36)

rr=r’, (37)
P =Ar- A, (38)
t’ tIZA_3 ’ZA—I
rzl//:rs( 1 2% 2 )’ (39)
A ri = At

r At'

Py = ———
JA = A"

From these matching conditions the equality of energy densities on the hypersurface
7 = const follow. From Egs. (39) and (40) we have

(40)

r At' :r—szt’(t’zA—3rS'2A“), (41)
a,
and with Eq. (38)
1 '
A=— (-1 =2r24™),

a,
"o ’”sz _azz

s 2 ’

with Egs. (37) and (32) we obtain
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1
Py =—% (42)
a,
But this is de Sitter’s energy density. So, on the hypersurface 7 =const the equality of
energy densities holds

pst = pds . (43)

Matching Stephani and de Sitter solutions in the flat case

The de Sitter metric for the flat case has the form
2t

ds,’ =dt’ —a,’e (dr’ +r’dc?). (44)
After transforming its spatial part to the convenient form, it takes the form
£+2X
s’ =dt’ —a’e” (dX* +do?). (45)
The Stephani metric is
1 -
dSst2 = —zdrz —4e?* I (dR* +d o). (46)

As mentioned, ¢ =#(7,R), X = X(7,R). Below dots and primes mean derivatives with

respect to the time and the radial coordinate, respectively. For the Stephani solution the
normal vector has one non-zero component on the matching hypersurface 7 = const :

Vo =—. 47

—+X
3 Xa,e“ 48
Vo , (48)
\/X'zalzez(a‘M) e
L+X
tr a,
B a,e
v =- (49)

From the equality of the first fundamental forms two matching conditions can be obtained

2Lty

46—2(R+T) — szalze a, _t12, (50)
t
4 Zg e (X7 1) (51)
1 .

Right-hand sides of these equations are equal; from this equality we obtain

2L x

)
t?=a’e “ (X7 -D. (52)

From the equality of the second fundamental forms such two matching conditions follow:
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

—+X
a JE'S)
_ a,e
4ue ARt — 4 ; (alX'e “o 4 t'], (53)
2(-Lrx)
\/X12a12e a, 412
L+X
2(R e” : 2 : 2
dye ) = — (~Xa,t” + Xa,i't' + X"a,t" -
t
2(Lrx)
\/szalze a4 (54)
2Lt x)y

—a,t’XX"+X"a’e © —X"a;t'-2t"X"),
Equality of right-hand sides of Egs. (53) and (54) together with Eq. (52) gives us

L+X 3

(X2 =DA-1XX X"+ X)+e” (X -D2(X'-X"-iX)+ (55
H-X1-XX") =0
Two possibilities exist in this case
the first is

X" =1, (56)

and the second one reads

1—-'XX —t'X"+ X' =0,

X' -X"”-iX'=0, (57)

Xt'+XX"=0.
But Eq. (57) is an incompatible system. So, we conclude that X = X(R )= R+ const , and
from Eq. (52) t = (7).

Matching Stephani and de Sitter solutions in the open case

We take the de Sitter and Stephani metrics in the open case in the form

a,’ sinh’ (IJ
a

ds,’ =dt’ - 22 (dX* +do?), 58
ds Sinh2 X ( ) ( )

. 2

(1@“ + coth(R + z‘)J

2 2 é/ 2 1 2 2
as, = 5 dr” +——— (dR” +do”), (59)
v ¢'sinh”(R+7)

where t =t(7,R), X = X(7,R).
For the Stephani solution normal vector has the only non-zero component on the
hypersurface 7z = const :
1/
—£+coth(R+r)
2¢

v, = . (60)
7%
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The non-zero components of the normal vector for the de Sitter solution are

. t
Xa, sinh—
)
V, = , (61)
. t .
\/X'zaﬂz sinh® — —¢"* sinh®> X
a,
. t
t'a, sinh—
a;
vV, =— . (62)
. t .
\/X’zaf sinh® — —¢"? sinh” X
a,
From the equality of the first fundamental forms, the conditions follow:
. t
| sinh® —
a
— :szalz —_ L (63)
¢'sinh”(R+17) sinh” X
. t
| sinh”> —
a
— =a ——~. (64)
¢'sinh”(R+7) sinh” X
From the equality of the right-hand sides of Egs. (63) and (64) we have
. t
sinh® —
a
t? =a, ——(X"? -1). (65)
* sinh®> X ( )
From the equality of the second fundamental forms, the conditions follow:
. t
a, sinh—
v _ a, y
sinh® (R + t
4 ( ) sinh? X\/X'zai2 sinh? — —¢*sinh? X (66)
a;

x(t"cosh X sinh X — aX'sinh LS cosh L),
a, a,
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

1 . .
L (a, X" sinh—— —

sinh*(R+7 B t a
¢ (R +7) \/X’Zalz sinh® — —¢"? sinh®> X g
a,

. t
a,t'’X"? cosh X sinh —
. . 4 4 a
—a,i'’X t'sinh— + X't cosh— — . & _
a, a, sinh X

t . t

a,”X" cosh—sinh® —

. t . t a a

—a,X"t"sinh— +a, X't'X'sinh — — —~ 2
a, a, sinh” X

t
+X't" cosh—).
a,

The equality of the right-hand sides of Eqgs. (66) and (67) gives

3
cosh—— (X" —1)> (X' = X" —iX") +sinh X(~X"X' = X'} +
a,
3

+cosh X (X" =1)(-1= X"*)+cosh X (X" =1)2(X"” + XX =0.

Two possibilities exist for satisfying this equation:
1) X7 =1,
or

X' -X"-iX'=0,

2 X'X'+ Xt =0,
1+ X% =0,
X"+ XXt =0.

(67)

(68)

(69)

(70)

The last set of equations is an incompatible system, so, we conclude from Egs. (69), (65)

that X = X(R)=R+const andt =¢(7).

Matching Stephani and de Sitter solutions in the closed case

Now, we take the de Sitter and Stephani metrics in a more convenient for our

purpose form

coshzi2

ds, 2> =di* —a —— 2 (dx* + do?),

& * costh( )
1¢ ?
£(+Zanh(R+r)J

» \2¢ 2 1 2 2
ds2 = . de . (dR*+do? ).
7 (cosh“(R+h)

(71)

(72)
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We match the functions ¢ =¢(7,R ), X = X(t,R)on the hypersurface ¢ = const. Dots
and primes denote derivatives with respect to time and radial coordinate, respectively.
The non-zero component for the normal vector in the Stephani case on the matching
hypersurface is
1e + tanh(R + 7)
2¢

vV, = . (73)
7%

And non-zero components for the de Sitter case are:

t
Xa, cosh—
a,
V, = , (74)
t
\/X'zaf cosh? — —¢#" cosh® X
a,
, t
t'a, cosh—
a,
vV, =— . (75)
t
\/X'zaiz cosh® — —1¢"? cosh® X
a,
From the equality of the first fundamental forms, the conditions follow
t
| cosh® —
a
- — trZ _XIZa}LZ - A , (76)
¢ cosh”(R+7) cosh™ X
t
a,’ cosh’ —
1 a,
2 = 2 b (77)
¢ cosh”(R+71) cosh™ X
From the equality of the right-hand sides of Egs. (76) and (77) we get
t
a,’ cosh® —
a
1 =——2 (X" -1 (78)
cosh® X ( )

From the equality of the second fundamental forms, the conditions follow:
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Matching of Stephani and de Sitter solutions on the hypersurface of constant time

t
a, cosh—
v % X

cosh’(R+7)
¢ ( ) cosh’ X\/X'za/l2 cosh® - — 17 cosh® X (79)

a,

x(a, X' (:osthinhL —t'sinh X cosh X),
a, a,

74 B 1
Ccosh>(R+7) \/

t

(a,t'cosh—x

t a
X"a,? cosh’ — —¢" cosh® X *
a;

A v ’ t 1yt " r t 1
xX'=t'X")+a, X cosh— ("X - X't") + X'sinh ————x
a, a, cosh™ X (80)

t t
x(X"a,’ cosh’ ——1" cosh” X) +t'X"*a, cosh— tanh X —
a; a;

. t
X" sinh—).
a,

The equality of the right-hand sides of Egs. (79) and (80) gives

cosh X(t'X'+ X'X")+sinh X(X? =D+ X"7? - X" - XXt') +

TN AP (81
+X'sinh— (X" =12+ X'-1)=0.
a,
Two possibilities exist to satisfy this equation:
1y
X" =1, (82)
or
2)
X'+ X'"X' =0,
1+ X7 -X" - XXt'=0, (83)
(+X'-1=0.

This set of equations is incompatible, so, we conclude from Egs. (82) and (78) that
X=X(R)=R+constand t = (7).

Conclusions

Matching conditions for the Stephani and the de Sitter solutions on hypersurface
7 =const in the spherically symmetric case have been obtained (7 is a time coordinate
of the Stephani solution). The coordinates of the de Sitter solution were taken in the
general form as arbitrary functions depending on the Stephani’s time and radial
coordinate. Matching was done both for special cases (flat, open, closed) and for the
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general case that does not concretize the type of curvature. From the matching
conditions the equality of densities on the matching hypersurface has been obtained.
From Eq. (15) we see that there is an abrupt change of pressure. Also it was obtained
that de Sitter radial coordinate is different from the Stephani one on some shift and de
Sitter time is an arbitrary function depending on Stephani’s time.
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