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REAL-TIME FORMALISM FOR POLARIZATION OPERATOR OF
A CHARGED SCALAR PARTICLE IN EXTERNAL ELECTROMAGNETIC
FIELD

We extend the Keldysh real-time formalism to investigate the retarded polarization operator of a
charged scalar particle in a statistical system that under the action of an external field deviates to any
extent from the state of thermodynamic equilibrium. We consider the peculiarities of the interaction
picture that exactly accounts for external field, the so-called Furry picture, and the perturbation theory of
electrodynamics for nonequilibrium processes. The interaction Hamiltonian, S-matrix, and density matrix
in the external electromagnetic field are constructed. We use these quantities to define the expectation
values and Green’s functions. The detailed analysis of the expansion of the casual Green function up to
the e terms is performed. We obtain the one-loop retarded polarization operator of charged scalar
particles in the coordinate representation. The desired expression is presented as the sum of three terms
given by means of integral equations. Some applications of the obtained results to the problem of the
energy spectra of charged particles at external conditions and further prospects are discussed.

Keywords: scalar eclectrodynamics, polarization operator, Keldysh formalism, finite temperature,
external electromagnetic field.

Msb1  pacmmpsiem  ¢opManusM  peajbHoro BpemeHn Kemgblma s MccieloBaHUs
MOJIAPU3ALMOHHOI0 ONIEPATOPA 3aPSKEHHBIX CKAJSIPHBIX YaCTHII B CTATHCTHYECKOM cucTeMe, KOTOpas
noj fAeiicTBHEM BHEIIHEro MOJsi MOKeT CKOJb YrogHO CHJIbHO OTKJIOHATHCA OT COCTOSIHHSA
TepMOAMHAMHUYECKOT0 paBHOBecHsl. PaccMoTpeHbI 0CO0EHHOCTM TIOCTPOEHHs TpeACTaABJCHUS
B3aHMO/IeiiCTBHS, KOTOpPOe TOYHO YYHTBHIBaeT BHelllHee MoJle, TaK Ha3biBaeMasi kapTuHa ®appu, u
TeOPMH BO3MYLUEHMI CKAJSIPHOW 3JIEKTPOAMHAMUKHM /JJsl HepaBHOBeCHBIX mnpoueccos. IlocTpoen
raMHJIbTOHHAH B3aHMMOJEiiCTBHA, S-MaTPHIa M MATPHIA IVIOTHOCTH BO BHELIHEM 3J1¢eKTPOMATHUTHOM
nose. C nMoMombi0 NMOCJHEAHUX ONPENeJICHO CpefiHee 3HAYeHHe ONepaTopoB (GH3MYEeCKHUX BEIHYHH H
¢dyukuun Tpuna. IpoBeneH aeTANbHBI AHAIM3 WICHOB pA3JIOKEHHS NOPSAAKA e’ NPHYUHHOMN
¢Gynxknun I'puHa, Ha ocHoBe dYero OblL1a HaiileHa ¢opMa OJHONET/IEBOI0 3ala3[AbIBAIOIIEro
MOJISIPH3allHOHHOI0 OMepaTopa B KOOPAMHATHOM mpejcTaBieHnH. Mckomoe BbIpaikeHHe sIBJIsIeTCS
CYMMOIi Tpex cJlaraeMbIX, KaJI0e M3 KOTOPBIX OMNpeJeasieTcsi HHTErPaJbHbIM COOTHOIIECHHEM.
OOcy:knaroTest JajbHelillide MePCHeKTHBbI U HEKOTOpbIe NPUJIOKeHHs! MOJYyYeHHBIX Pe3yJbTaTOB K
3ajave MOMCKA CMEKTPOB 3aps’KEHHBIX YACTHIl BO BHEIIHUX YCJIOBHSAX.

KiaioueBble caoBa: cKalsipHas 3JEKTPOJMHAMUKA, HOJSPU3ALMOHHBIN orepaTop, (opMau3m
Kennpinia, koHeuHas TeMIepaTypa, BHEIIHEE MIEKTPOMarHUTHOE I0JIE.

Mu posmuproeMo dopmalizM peansHoro yacy Kenauma pis JociaigKeHHs1 nojspusaniiiHoro
oneparopa 3apsi/UKeHUX CKAJISAPHUX YACTHHOK Yy CTATHCTUYHIil cucreMi, sika mix Ai€l0 30BHIIIHLOIO
MoJIsl MOKe SIK 3aBrOJHO CHJIbHO BiIXWJIATHCH Bill CTaHy TepMoAMHAMi4HOI piBHoBaru. Po3riasiHyTo
0c00IMBOCTI MOOYI0BH NpeACTABJIeHHs] B3a€MOJii, sike TOYHO BPaXOBY€ 30BHIllIHE MoJie, TAK 3BaHA
kapTtuHa @appi, Ta Teopii 30ypeHb CKAJIAPHOI eNeKTPOAMHAMIKH I HepPiBHOBAKHHUX IMpoleciB.
Ilo6ynoBaHo ramiibToOHiIaH B3aemMoAii, S-MaTpUUs Ta MATPUUS TYCTHHH Y NPUCYTHOCTi 30BHILIHBOTO
€JIeKTPOMAarHiTHoro moJs. OcraHHi 0yJI0 BUKOPHCTAHO A/ BH3HAYCHHS CepeJHIX Bil omepartopiB
¢isnunux pesmunn i ¢pynkuii I'pina. IIpoBeneHo nerajabHuii aHaJ3 4/leHiB PO3BUHEHHS NOPAAKY ¢’
npu4uHHOI pyHkuii I'pina, Ha ocHOBI Yoro 0yJo 3HaiineHo ¢opMy 0OJHONETEJIBLHOI0 NOJIAPH3aLiiiHOrO
omeparTopa, 10 3amMi3HIOETHCS, B KOOpAWHATHOMY mpeactasienHi. lllykannii BHpa3 € cymMoI0 Tpbox
JOMAHKIB, KOKEeH 3 SIKHX BH3HAYEHO IHTerpajJilbHUM cHiBBilHOMEHHAM. OOroBoprOOThLCS MOAAJbIII
NMepcrneKTHBH TA JesAKi 3aCTOCYBaHHSI OTPMMAHMX pe3yJbTaTiB A0 3a4a4i MOLIYKY CIEKTPiB eHeprii
YaCTHHOK Yy 30BHilIHiX yMOBax.

KuiouoBi cioBa: ckamsipHa eNeKTpOAMHAMIKa, MOIpH3aliiHMI omepaTop, dopmanism Kenania,
CKIHUEHHA TeMIIepaTypa, 30BHIIITHE eJIEKTPOMAarHiTHE MoJIe.
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Introduction

Spectra of charged particles in external electromagnetic fields at finite temperature
are important objects having various applications.They allow calculation and
investigation of all thermodynamic functions of many-particle systems. Usually, to
investigate a spectrum, the imaginary time formalism of finite temperature field theory is
applied. However, in this formalism to perform an analytic continuation and derive
spectrum by means of functional equations, an expression of interest has to contain a
convenient integral representation (such as Fock-Schwinger proper time representation).
Because of such difficulty, within this approach, the spectrum of gluons at finite
temperature in the presence of chromomagnetic fields was calculated only for some special
cases [1 - 3]. We are going here to apply an alternative approach developed already by
Keldysh [4] and Schwinger [5] in studies on nonequilibrium quantum statistics. This
method is out of technical difficulties related with the analytic continuation.

In reality, an environment considered is realized in heavy ion collision experiments at
RHIC and LHC where very strong magnetic field are generated [6, 7]. The presence of
magnetic field can be a source of properties of quark-gluon plasma discovered in modern expe-
riments. So, the working out of formalism convenient in the described background is of interest.

In the present paper, to develop formalism, we investigate the case of scalar
electrodynamics. At first, we consider the Keldysh formalism in the presense of external
comditions. Further the perturbative analysis of exact two-point Green function is
performed and the one-loop polarization operator of a charged scalar particle is calculated.

Scalar electrodynamics at external conditions

In the present section we develop the Keldysh formalism for scalar electrodynamics
in an external field considering the one-loop polarization operator of a charged scalar
particle as example.

The Lagrangian of a charged spinless particle in the external field reads

. . ext\* . . ex 1 v
L= (0, —ied, —ied, N (p+(x)(8ﬂ —ied, —ied, t)(p(x)—ngf(x)(p(x)—ZFwF” , 0
F,=0,4,-0,4,, e=le|, g" =diag(1,-1,~1,-1)

where 4, is potentail of radiation field, Afj” denotes potential of external

electromagnetic field, satysfying the equation of motion 0, F/;/ = 0.
We present the Lagrangian as the sum of three terms
L=Ly+Ly+L,,.
They are as follows
Ly = (0, ~ied,) p* (1)@, ~ied,)p(x) = m>¢" (x)p(x)
is the Lagrangian of scalar particle in the external field,

1
Ly == FuF"

is the Lagrangian of free radiation field,
L, = ie(p+D#go AP —e*ptpd?
is the interaction Lagrangian where
9" D,p=—(0, - ieAsz)*go+go +9 (0, - ieAZXt)go )
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Real-time formalism for polarization operator of a charged scalar particle in external electromagnetic field

We define canonical momenta and introduce interaction Hamiltonian
H= jaf3x(7r7fr +ieAdS" (wp -t o)+ (V + ie?lm Yoo (V- ie}iext Yo—m?o g+
+iedy(rp -7t )+ l'e;w* (V- ieA® Yo —ie(V + ie?lext Yo Ay 0+ ezgfq);iz) +H} (2)
Note the relation between interaction Lagrangian and Hamiltonian,
2 2
H;y =—L,, —e 4 0 . 3)
As we see, these functions differ by a non-covariant term, as is usual for time-
dependent interactions [8].

int

Scalar electrodynamics in external fields at finite temperature
Following [4], we define the density matrix

D =, 090 = O, 1) 4

with boundary conditions
Qo —Hy(—0) = Hy(-»)

kT
where Hamiltonians are defined according to the previous section.
The complete set of wave functions in magnetic field is the solution of the equation

(P, +ed™) —m®)p, (x)=0,
ext __
A5 =(0,0,H - x,0).

p(=0)=py =exp

We split the wave functions of stationary states ¢, with defined momenta p y» P.,and energy

ef = 4\p2+m’+|e|@n+1)
= U .
_ —lepttipyy+ipzz
Y, —e " ’ : fn (X)
in two sets. The first set contains wave functions with positive frequencies, the second
one - with negative frequencies. We denote them as go:f (x). Field operators ¢ and ¢
are of the form

9o (x) = X(g, (N)a, +¢, (b)),

0§ ()= X(p," (0)ay + 9, (X)b,),

n

+ g4
and a, , b

- satisfy the commutation relations for Bose-operators. Field operators satisfy

the equation
i—>=[p,Hy]

These operators and operators of radiation field 4, form the interaction picture of scalar

electrodynamics in an external field (so-called Furry picture).
We solve the density matrix equation with S-matrix

S(t,—0) =T exp(—i jH,-m (t')dt').

Density matrix at time t is

p(1) = S(t,~0) p(t)S” (t,0).
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In what follows we consider the statistical averages of operator products taken at various
time moments. So it is convenient to carry-over the time dependence of density matrix to
operators, therefore we switch into the Heisenberg picture. We set density matrix at time ¢
= 0 accounting for all changes from the moment of switching the interaction on:

p = p(0) = 5(0,~0)p(1)S™ (0,%0).

Now we use the operators which at # = 0 are equal to the free ones because the density
matrix is defined as p(0)

9(x) =5(0,x)py (x)S(x,0)
where, by definition,

;
S, t)y=T exp(— i[H,, (t")dt"J =S(t',—0)S* (t,~0).
t

Statistical average of the T-products of Heisenberg operators can be transformed into the form
Tr(pAD)B(')...)= Tr(poT. (A (0)By (1)...5,)). )

where T, stands for ordering along the line which runs from —oo, passes throught the

points #,#..., runs to + oo and then returns back to —oo .
The statistical averages of the T-products for operators of scalar and electromagnetic
fields in the interaction picture

Tr(poT(p(x))p(x2)..0(x,)p" (x))9" (x2)..07 (x,,))
Tr(poT (A4, (x1)...4, (x,,))

can be reduced to sums of the products of pairs of these operators [9].
The Green functions of scalar field ¢ in the interaction picture are defined as follows

Gy (1.7, 2,F) ==iTr(p T, (9o (¢, F)pg (1.F)) ==iTr(po T (9o (1. F)pg (47))),
GE (¢ 7.t 7 = ~iTr(po T (9o (t_F)pg (¢ 7)) = ~Tr(poT (0o (t_Phpg (7)),
Gy (17,17 ==iTr(po T, (po (t_F)pg (£7)) = =iTr(popo (_F)pg (L1F),
G (7,2 F) ==iTr(po T, (po (1L, F)pg (1LF)) = =iTr(popg (147 )py (1,.7))

where ¢, stands for the point on the positive branch of integration line, 7_ stands for the

point on the negative one, and T denotes anti-time-ordering operator.
Exact Green’s functions are defined as

G" (.7, £7) = =iTr(p,T.(,(t.F)d; (£,7)S.,)).
G" (7,1 F) = ~iTr(p,T.(¢,(tF) (£ 7)S.,) (6)

G* (1.7, 157") = =iTr(po T, (9o (1:7)pg (157)S.)) -

The results of this section are applied to calculate the one-loop polarization operator
below.
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Real-time formalism for polarization operator of a charged scalar particle in external electromagnetic field

Retarded polarization operator in order ¢’

To obtain the particle energy spectrum, we investigate the poles of the full
retarded Green function. One can derive it by solving the Schwinger-Dyson equation
where the one-loop retarded polarization operator is taken into account. The similar
method was applied to find the spectrum of QGP problem in Ref. [10].

The polarization operator and Green function are related by the Schwinger-Dyson
equation

G(x,x") =G (x,x") + fd)ﬁdyz Go(x, y)(y1,y2)G(y5,x")

c_[6" 6} o _ (G G _(nf oo
¢ ¢") " |6 6f) n ot/

Considering this equation in the order ez, we substitute G(y,,x") to Gy(y,,x")

where

under the sign of integration.
G (x,x') = [dyydy (G (2, y) T (91, 32)G " (y2,x) +

+ Gy (31, 9)G" (07, x)+ G (e, y) T (31, 2)G (v, x) +

+G @) (31,32)G (2.0 (7)
We consider G (x,x") in order ¢’to obtain the components of the polarization
operator.

Gy (1.7, 6.7 ==iTr(p T, (9o (1.7)gg (£47)S,.)),

§= Texp(i oJ?Lint (t)} S= Texp(_ i O.[OLint (t)j’

G® (x,x") = =iTr( po [dy dy, (T(py (x)gg (x' ) Lﬁ,i? (y)Ly) (v2)) +

(=)’
2!

+ T (L) () T (9o (g (XL (1)) +

+ po Jan T (oo (07 LD () + FALD GO T o D) (8)

+ T2 L) ()L () T (00 ()G (x7)) +

Let us turn to the first term of this expression

—~iTr po Jdvidy, T(po (x)og (x )—LEB ()L (v2)) =

.l . v ’
= —z;(ze)zfdyldyz( 2D5 ™ (11, 72) - GE (x,y))D G (31,3,)D" G (v2,x') +
+G¢ (6, )D*GE (31,%") - 2Dg ™ (31, 2) - (—iTr(po T(po(32)D" 05 (¥2))))) +

+G¢ (x,x )—deldyzrrmo(LE,i? LY (). (9)
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The last expression can be presented as the sum of diagrams in Fig. 1.

+ +
e —
+ +r }+ + @
I + +
A s I
L + + +
_h_l_.-_
(a) (b) (c)

Fig.1 One-loop contributions in // F coming from LE,IZE .

Solid and crossed lines correspond to Green’s function of scalar particle and photon respectively.
Sign «+» denotes the vertex on the positive branch and «-» — on the negative one.

A type (b) diagram equals to zero in a constant homogeneous external field
because the particle 4-momentum is conserved [11]. The disconnected diagrams cancel
each other out. Hence, we obtain

fdidy,G" (e TG (01, 12)GF (9, x7) =

=ie® [dy,dy, D§ " (v1.¥2) Gy (x,1)D"G{ (31, ,)D"G§ (v5.x")  (10)

where H(If) (»1,¥,) in Eq. (7), is a contribution to - (»1,¥,) coming from L(.l)(yl).

int
We denote T7(p, ...) =(...)o for convenience.
We rewrite the next term of (8) as follows

— i[dy(T (o (X)pg (X WILE) (1)) =
=—ie” [dyG{ (%, )G (1,x") - €, Dg ™ (1, 9) + G (x,x)dW(T (L) () =

:Id)ﬁdyzGF(X,J’])Hé) (J’1Jz)(z)GF(yz,x')+G(I)F(X,x')Idy<T(L52 () (A1)
where

15 (1, y2) = =ie*0(y, = )& - D¢ (71, 72) (12)

is the second contribution to the polarization operator /7 £ V1>>2) -
Let us consider the last term of the expression (8)

— ifdy, dy, (T (~iL) (7)) T (o (x)gg (xiLY) (v2)) =
=ie” [dy,dy, Dy " (y1, y2)( Gy (x, 3)D,Gy (v, x") - (=i{ T(¢y (»,) D,y (1,))o +
+Gy (5,¥2)D, G (y2.x") - (< T(py (»)D,05 (31))o +
+ Gy (%, 91)D, Gy (y1,72)D, Gy (y2,x) +
+ Gy (%,92)D"Gg (y2.31)D" Gy (31.x) +

+ G (e, xdy dy, (T (=iL$) (y)) TGL,) (7))o (13)
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Real-time formalism for polarization operator of a charged scalar particle in external electromagnetic field

We represent the obtained sum as the sum of diagrams in Fig. 2 (except for the last term).

@ Q J_\_ + + _/_\4__;
| 1 I o 1
. N s
-1 + o+ +: + N N—

+

(d) (e) () (g)
Fig. 2 One-loop contributionsin /7~ and I77 .

Diagrams of type (d) and (e) equal zero the same way as the diagram of the type (b)

does. Diagrams (f) and (g) contribute to /7~ and /1™, in accordance with Eq. (2).
Reducing the rest of terms in expression (8) by the Wick theorem

2
. =~ (i ,
iy (T (5= L) L) () T (o (05 (5o =

—ifdy(T LG (DT (9o ()5 (D)o, (14)
we see that they do not contain the casual function Gép which depends on x or x'.
Therefore they have no effect on /7 F.II" and I~ but define I7 F . Their contribution
containing vacuum diagrams is

2
r . ~ —1 . ~ .
Gy (x,x )(—zjdyldyﬂ(%LE}z? DLt (2o = ifdy(T LG (7))o )

The sum of all the vacuum loops in GF® (x,x"),isa (S*S), in order e?, and obviously

equals to zero.
The retarded Green function is defined by means of statistical average over the
Heisenberg density matrix

G* (x,x) =0 = ){[p(x),9 " (x)]-
It is related with the above defined Green function by the equation

GR=GF -G*=-GF +G~
and satisfies the Schwinger-Dyson equation

G (x,x") = G§ (x, x") + [dyydy, G§ (x, y TR (31, ¥2)GR (15, %)
where

=t vt =—at )
Finally, we obtain formula for I7* by using Eq. (13),
Jdyydy,Gg (x, y)IT* (11,72)Gg (v,27) =

= _iezfd)ﬁdh Daw (Y2, 01)- G(f (x,y)D*Gq (31, y2)D"Gg (y2,x"). (15)
Summing up the carried out analysis of the expansion of the full Green function,

1% is the sum of I7 (IT) +11 g) , the retarded polarization operator looks as follows

n® =mhy+nb + 1. (16)
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Its terms are defined by means of integral equations (10), (12) and (15). In this way the
polarization operator of charged scalar particle in the electromagnetic field at finite
temperature in the Keldysh formalism is constructed.

Conclusions

In this paper we have considered scalar electrodynamics at external conditions.
We obtained the one-loop polarization operator of a charged scalar field at a finite
temperature and in an external electromagnetic field.

Given by Eq.(16), the one-loop retarded polarization operator 17 R allows to
investigate spectra of charged scalar particles in different environments. For this purpose
we have to substitute it into the Schwinger-Dyson equation

G" (x,x") = G (x,x") + [dyydy, G§ (x, y) T (1, 92)GR (v, %),

and study the singularity positions of the full Green function in momentum space. This
problem will be considered separately.
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