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WAVE DIFFRACTION BY SEMI-INFINITE PERIODICAL MULTI-ELEMENT 
KNIFE-TYPE STRIP GRATING OF FRACTALS 

The diffraction problem for the H -polarized wave by a semi-infinite knife-type grating 
which consists of fractals is considered. The grating is the semi-infinite system of identical 
layers. Every layer is a finite-element plane fractal strip grating based on the pre-Cantor set in 
turn. The operator method is used for solving the problem. Nonlinear operator equation 
relatively an unknown reflection operator is obtained. The regularization procedure which 
connected with the elimination of singularities is carried out. The scattered field can be 
represented as a superposition of field of cylindrical waves which is originated as a result of 
scattering by the semi-infinite grating end and plane waves corresponding to infinite periodical 
grating. The magnitude of the reflection coefficient of plane waves of the gratings under 
consideration and directional patterns of cylindrical waves are presented.  

Keywords: semi-infinite grating, operator method, successive over-relaxation method, 
regularization procedure.  

Розглянуто задачу дифракції H -поляризованої хвилі на напівнескінченній 
періодичній ножовій решітці з фракталів. Решітка являє собою напівнескінченну систему 
однакових шарів. Кожен шар, у свою чергу, є скінченноелементна плоска фрактальна 
стрічкова решітка на основі передканторової множини. Для розв’язання застосовується 
операторний метод. Отримано нелінійне операторне рівняння відносно невідомого 
оператора відбиття. Проведено процедуру його регуляризації, яка пов’язана з 
виключенням особливостей. Розсіяне поле можна представити у вигляді суперпозиції 
полів циліндричних хвиль, створених краєм напівнескінченної структури та плоских 
хвиль, що відповідають нескінченній періодичній решітці. Наведені значення коефіцієнта 
відбиття плоских хвиль розглянутих решіток та діаграми спрямованості циліндричних 
хвиль.  

Ключові слова: напівнескінченна решітка, операторний метод, метод релаксації, 
процедура регуляризації. 

Рассматривается задача дифракции H -поляризованной волны на полубесконечной 
периодической ножевой решетке из фракталов. Решетка представляет собой 
полубесконечную систему одинаковых слоев. Каждый слой, в свою очередь, является 
конечноэлементной плоской ленточной фрактальной решеткой на основе 
предканторового множества. Для решения применяется операторный метод. Получено 
нелинейное операторное уравнение относительно неизвестного оператора отражения. 
Проведена процедура его регуляризации, связанная с исключением особенностей. 
Рассеянное поле можно представить в виде суперпозиции полей цилиндрических волн, 
созданных краем полубесконечной структуры и плоских волн, соответствующих 
бесконечной периодической решетке. Представлены значения коэффициента отражения 
плоских волн рассматриваемых решеток и диаграммы направленности цилиндрических 
волн.  

Ключевые слова: полубесконечная решетка, операторный метод, метод релаксации, 
процедура регуляризации.© 
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1. Introduction 
Knife-type gratings are widely used for designing polarizators, frequency-selective 

devices, reflection screens, etc. [1-3]. Among plane diffraction gratings we should mention 
special type of gratings, namely, the gratings based on fractals. Such gratings s are 
attractive because of their compact size and their multiband property. The fractal gratings 
have application in medicine, military technology and cellular systems [4].  

It is interesting to study a semi-infinite periodical structure which consisting of 
fractal gratings. The model of semi-infinite structure allows describing the field which is 
reflected from the end of a real finite grating. 

In a large number of papers the semi-finite gratings which consist of cylindrical 
scatters are considered. In [5-9] the Wiener-Hopf method was used in supposition of 
small cylinder radius and large period as compared to the wavelength. In [10] the Foldy 
method is used in the case of Dirichlet boundary conditions. It is supposed that the 
transverse size of the scatters is small as compared to the wavelength. In [11] the method 
proposed in [10] is developed for the semi-infinite grating of circular cylinder scatters of 
arbitrary radius both in the case of Dirichlet and Neumann boundary conditions. 

The semi-infinite system of grooves in a perfectly conducting plane is considered in 
[12] using an overlapping T-block method. The full field is represented as a sum of fields 
scattered by each groove. At a sufficient large distance from the end of the semi-infinite 
grating, the coefficients of a sum are replaced by corresponding coefficients of infinite 
periodical structure. 

In [13-16] the semi-infinite periodical gratings with a single strip on period are 
considered. As a rule, diffraction problems for such gratings are solved in assumption of a 
single mode current distribution on the strips. The current on the strips are represented as 
a sum of current corresponding to the infinite grating and contribution induced by the end 
of the grating. The semi-infinite strip grating with small period as compared to the 
wavelength is considered in [16]. Using the approximate boundary conditions method the 
problem is reduced to the canonical one which is solved with the use of the Sommerfeld-
Maliuzhinets method.  

The strict solution of the diffraction problem by different semi-infinite periodical 
systems of obstacles is obtained by the operator method [17-23]. The reflected field is 
expressed via the reflection operator which is obtained from nonlinear operator equations. 

In all papers mentioned above single-element semi-infinite gratings are considered, i.e. 
gratings with just a single element on period (strip or cylinder) and the gratings consist of 
these single elements placed periodically. In this paper the semi-infinite multi-element 
periodical grating will be studied by the operator method. As a single element we choose 
multi-element strip gratings based on the pre-Cantor set (fractal gratings). Single elements 
are placed in parallel planes one under another forming so-called knife-type grating. 

2. The problem statement 
Let us place the first multi-element grating in the plane  so that its center 

coincides with the 
0=z

y - axis. Let us place every next th grating in the plane )1( +n
nhz −=  so that strips were one under another, and denote the distance between ends of a 

single-layer grating or its width as . The structure geometry is presented in Fig.1. The 
time dependence is assumed to be . Suppose that from the half-space  the 

d2
tie ω− 0>z H -

polarized plane wave with spectral function (Fourier amplitude) )(ξq  incidents on the 
formed multi-element knife-type grating. Then single non-zero magnetic component of 
the incident field may be represented in the form  
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∫
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−= ζζγζζ dzikyikqzyH i
x ))(exp()(),( , 

where 21)( ζζγ −= , 0Re ≥γ , 0Im ≥γ , 
λπ /2=k  is the wavenumber. We denote the 

Fourier amplitudes of the reflected field and the 
field between the layers as )(ξa , )(ξnC  and 

)(ξnB . Then the reflected from the semi-infinite 
grating field may be represented in the form   

∫
∞
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Fig. 1. Structures geometry. 
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Let us introduce an integral reflection operator  from the semi-infinite structure 
with the kernel function . Then the Fourier amplitude of the reflected field and 
(1) may be written in the form 

R̂
),(ˆ ζξR

∫
∞

∞−

= ζζζξξ dqRa )(),(ˆ)( ,             (2) 

∫ ∫
∞

∞−

∞

∞−

+= ξζξγξζζξ ddzikyikqRzyH refl
x ))(exp()(),(ˆ),( . 

When we use the operator method we should know the reflection and transmission 
operators of a single obstacle. Suppose that we know reflection and transmission 
operators r  and t  of a single multi-element grating which may be obtained by the 
method of singular integral equations [24-26]. Then the Fourier amplitudes of the 
reflected and transmitted fields may be obtained as follows 

ζζζξξ dqrq ∫
∞

∞−

= )(),())(r( ,       , ζζζξξ dqtq ∫
∞

∞−

= )(),())(t(

and  
),()(),( ζξζξδζξ rt −−=     (3) 

where )(ξδ  is the Dirac delta function. 

3. Operator equations 
The Fourier amplitudes of the reflected field and the field between layers are 

connected by the following operator equations [18], [23]  
1ter Bqa += ,     (4) 

11 ret BqC += ,      (5) 

11 eR̂ CB = ,                (6) 
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nn CB eR̂= ,                (7) 

nnnn BqC ert 1 += − , ...,3,2=n  
where operator  determines the amplitudes variation of the field when the coordinate 
system is shifted by the distance  along the direction of the field propagation 

e
h

)())(exp())(e( ξξγξ qikhq = . 
Notice that along with (4) the Fourier amplitude of the reflected field may be 

expressed as follows (2)  
qa R̂= .             (8) 

Then after substitution (5) into (6), and (8) into (4), and using (3) we may obtain the 
following operator equation relatively the unknown reflection operator R : ˆ

11 reerR̂ BBqq −+= ,        (9) 

11 ereR̂erR̂eR̂ BqqB +−= .          (10) 
Since the scattered field may by represented as a sum of the fields with discrete and 

continuous spectra, then the operator R  may contain singularities. After substitution (10) 
into (9) one can see that the kernel function of the operator R  may have singularities in 
the points coinciding with the zeros of the function 

ˆ
ˆ

)))()((exp(1),( ζγξγζξ +−= ikhf . 

These points correspond to the cut-off frequencies of spatial harmonics of the 
infinite periodical grating and they are the poles. Then the operator  is the singular 
integral operator. For every fixed 

R̂
ξ  denote the zeros of the function ),( ζξf  as  

2
21

2
1)sgn()( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−= ξ

π
ξζ

kh
l

ll , )(),...,( ξξ NNl −= , 

and for every fixed ζ  denote the zeros of the function ),( ζξf  as 
2

21
2

1)sgn()( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= ζ

π
ζξ

kh
l

ll , )(),...,( ζζ NNl −= . 

For the elimination of singularities the regularization procedure is needed. The 
regularization procedure consists in the following. Such function is added to the integrand 
which has singularities, so that their sum does not have singularities and the integral 
could be calculated with the use of the quadrature formulae, and the integral for the term 
which we add could be calculated analytically. To remain the identity, the same term is 
subtracted. 

Let us introduce operator  as follows R
+−−= esR̂esR̂R                          (11) 

with the kernel function 
),(),(ˆ),( ζξζξζξ fRR = . 

In (11) we subtract singularities from the operator , so the operator  does not 
have singularities. Let us write the action of the operator  on an arbitrary function 

R̂ R
R̂

)(ξg  with the use of the regularizing operator  [23] 1F
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))(RF())(R̂( 1 ξξ qq = .         (12) 
By analogy with using the operator regularizing operator  we can write 0F

).,)(RrF(),)(R̂r( 0 ζηζη =              (13) 
In the expanded form the expressions (12) and (13) may be written as follows 
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where 
),(
)(lim)(

)( ζξ
ξζζξα

ξζζ f
n

n
n

−
=

→
, 

),(
)(lim)(

)( ζξ
ζξξζβ

ζξξ f
n

n
n

−
=

→
. During deriving these 

expressions the following relation is used 

∫
∞

∞−

=
−

0
ξζ

ζdPV . 

Then (8) and (9) may be rewritten in the form 

Re,reFRFer)Re(RFereFRFere)re(I

RFer)Re(RFereFRFere)e(IrR

00
1

0
1

−−−−

−−−+=
−

−

           (14) 

where  is the unit operator. Eq. (14) is a nonlinear operator equation relatively the 
unknown operator  connected with the unknown reflection operator by (11). One may 
solve (14) with the use of the iterative procedure with the relaxation parameter [27] 

I
R

( ))R~(PR~)I~(~R~ 11
1

−−
− +−= jjj ττ  

where  is the vector obtained after discretization of the integral operator  
from its matrix by simple renumbering its elements,  is the right side of (14), 

NN
i

iR ×
== 1)~(R~ R

P N  is 
dimension, τ~  is diagonal matrix with elements τ  of )()( NNNN ⋅×⋅  dimension, τ  is 
the real parameter, jR~  is the solution obtained on the j th iteration, ...,2,1,0=j . Due to 
the appropriate choice of the parameter τ  we managed to archive the vanishing of the error. 

4. Numerical results 
We suppose that plane wave with unit amplitude incidents on the grating. The angle 

of incidence is . The scattered field by the semi-infinite grating may be 0
0 90=ϕ
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represented as a superposition of the field of cylindrical waves appeared as a result of 
scattering by the end of the grating and plane waves corresponding to an infinite 
periodical part of the grating. Using the saddle-point method [28] when  the 
scattered field may be represented in the form [23] 

1>>kr

),(),(),(),( rHrHrHrH erfc
x

c
x

F
x

r
x ϕϕϕϕ ++= .           (15) 

The first term in (15)  is a set of plane waves (Floquet’s modes) and does 
not decrease when 

),( rH F
x ϕ

∞→kr . The second term in (15)  is a cylindrical wave 

scattered by the end of the grating. Its magnitude decreases as 

),( rH c
x ϕ

kr/1  when ∞→kr . 
The third term in (15)  takes into account integrand singularities and provides 
the uniform asymptotic representation of the field when . It is expressed in terms 
of Gauss error function. Here 

),( rH erfc
x ϕ

∞→kr
),( ϕr  is the polar coordinate system.  

We introduce function which describes the field without influence of the plane waves 
2

),(),(log10),( rHrHrD erfc
x

c
x ϕϕϕ += .       (16) 

Function ),( ρϕD  is the similar to the direction pattern for the finite grating. 

However we should notice that due to the term  sum ),( rH erfc
x ϕ ),(),( rHrH erfc

x
c
x ϕϕ +  

does not decrease when r  increases.  
Introduce reflection coefficient of the plane waves as follows 

|),(2| 0ζπ wRRC = . 

Notice that the reflected plane wave does not exist in the total domain ),0( πϕ∈ . It 
is obvious that RC  does not depend on the distance r . 

Let us compare the characteristics of the scattered fields by the semi-infinite gratings 
of single layers which consist of a single strip and pre-Cantor grating. Denote as  the 
set obtained on the th step of the creation of the Cantor set in the interval 

nK
n );( dd−  [29]:  
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and so on. Denote nn KddCK \);(−=  the complement of the set  in the interval 
. Let us call  the pre-Cantor set of the order .  

nK
);( dd− nCK n
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The results in Figs. 2, 3, and 4 are 
presented for the same values of the 
distance between layers  
( ), but different single layer 
grating geometry. Introduce parameter 

5=kh
8.0λ/ =h

L  which is equal to the sum of the 
length of all strips of a single layer 
(along y - axis). The results presented 
in Fig. 2 a), Fig. 3 (curve 1) and Fig. 4 
(curve 1) are obtained for a single strip 
with a width of half of the wavelength, 

 ( ).The 
reflection coefficient of the plane wave  

57.12/ == kLkd 25.0λ/ =d  
a) 

equals to . In Figs. 2 b), 3 
(curve 2) and 4 (curve 2) the results for 
the pre-Cantor grating of the forth 
order are presented, , 

0.1279=RC

4=n 57.1=kd , 
. The reflection coefficient 

for the grating with a single layer based 
on  equals to . In 
Fig. 2 c), Fig. 3 (curve 3) and Fig. 4 
(curve 3) the results are calculated for a 
single strip with a width that equals to 
a sum of strips width of the pre-Cantor 
grating, , . The ref- 

52.2=kL

4CK 0.02528=RC

26.1=kd 52.2=kL
  

b) 
lection coefficient in this case equals 

. The choice of such 
structure parameters allows comparing 
semi-infinite knife-type grating with 
layers consisting of the pre-Cantor 
grating and a single strip. Notice that 
the reflection coefficient for the grating 
based on the pre-Cantor set almost 4 
times smaller than the reflection 
coefficient of the single-element 
grating with the same parameter 

. 

0.09628=RC

52.2=kL
Fig. 2  presents the reflected near- 

 
c) 

field distribution (real part of the 
magnetic field component ). Two  r

xH
Fig. 2. Real part of the reflected field component 

. )Re( r
xH

type of waves propagate away from the grating. One of them is a cylindrical wave 
appeared as a result of scattering by the end of the grating. The field maximum of such 
wave situated at . Another one is a plane wave that corresponds to an infinite 
periodical part of the grating. The structure parameters are chosen so that only one 
reflected plane wave can propagate in the domain 

090=ϕ

0>y , .  0>z
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It is seen from the figure that the plane wave exists only in the domain ϕ<w  where 
 is the propagation angle of the reflected plane wave which corresponds to the 

periodical part of the grating.  

0165≈w

  
Fig. 3. Module of the reflected field component 

r
xH , 1.0=λz . 

Fig. 4. Dependence of ),( rD ϕ  vs. ϕ . 

It is suitable [22] to calculate the scattered field at the distance λ1.0=z  from the 
structure (Fig. 3). The field maximum is located near 0=y  above the middle of a single 
strip. For a single strip with the decrease of its width  the field maximum decreases. 
The field maximum for the pre-Cantor grating is significantly smaller than for a single 
strip. In the domain above the grating the oscillations are present which appear as a result 
of influence of the evanescent plane waves on the near field. 

d2

Fig. 4 shows the dependencies of the ),( rD ϕ  vs. polar angle ϕ  when 30=kr . One 
may observe the first maximum near angle  in the dependencies. The 
second maximum near angle  is connected with the excitation of the plane 
wave of the periodic part of the grating. The value of this maximum, mainly, is defined 
be the term  in (16). 

0
0 90==ϕϕ

0165== wϕ

),( rH erfc
x ϕ

It is obvious that since the grating is symmetric relatively the -axis, all presented 
dependencies are also symmetric relatively the -axis. 

z
z

From Fig. 2, Fig. 3, and Fig. 4 one can see that the amplitude of the field reflected 
by the pre-Cantor grating is sufficiently smaller than the amplitude of the reflected field 
by the single-element grating. Thus the pre-Cantor grating is practically transparent for 
the incident wave.  

The conducted numerical study shows that the increase of the order of the pre-
Cantor set  leads to negligible changes in characteristics of scattered fields, and in 
the same time it significantly complicates the manufacturing of such gratings. 

4>n

5. Conclusions 
In this paper the semi-infinite multi-element knife-type grating is studied 

numerically for the first time. As a single layer the finite plane grating based on fractal or 
the pre-Cantor set is chosen. The problem is reduced to the nonlinear operator equation. 
After its regularization which is connected with the poles exclusion, it is replaced by the 
matrix one. For solving it the iterative procedure with the relaxation parameter is 
proposed.  
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The scattered far and near fields are studied. It is established that the geometry of a 
strips displacement in a single layer has a greater influence on the field amplitude than 
their width. So the reflected field amplitude by the pre-Cantor grating is sufficiently small 
compared to the reflected field amplitude by the single-element one. The choice of the 
pre-Cantor grating of the 4th order ( ) is optimal and the increase of the order  
does not introduce significant changes in the characteristics of the scattered fields.  

4=n n

Thus multi-layer periodical gratings based on pre-Cantor set are perspective for 
designing of radiolucent and radiotransparent covers, antennas systems and other 
functional microwave devices.  
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