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NON-LINEAR RELAXATION IN SPATIALLY UNIFORM PLASMA

The component temperature and velocity relaxation in spatially uniform completely ionized two-
component plasma is investigated on the basis of the Landau kinetic equation. The investigation is
made on the basis of the generalized Chapman-Enskog method which allows us to account for the
spatially homogenous relaxation processes. The local equilibrium assumption (LEA), that spatially
homogenous component distribution functions (CDF) are Mawxellian ones with time-dependent
component temperature and velocity, is widely used in literature. Our previous papers are devoted to
the calculation of corrections to the LEA in the framework of the linear relaxation theory. In this paper
we investigate the theory which is quadratic in small deviations (SD) of the component temperatures
and velocities from their equilibrium values. The contributions of this theory to the CDF and to time
equations for SD are calculated. At some stage of the system evolution such contributions in the
leading order in small electron-to-ion mass ratio (MR) can be comparable to our corrections to the
LEA of higher orders in MR which are obtained in the framework of the linear relaxation theory.

Keywords: Landau kinetic equation, generalized Chapman-Enskog method, completely ionized
spatially homogenous plasma, linear relaxation, non-linear relaxation.

Ha ocHoBi kiHeTH4YHOro piBHsAHHA JlaHKay BUBYAETHCSA pejlaKkcallis IBHAKOCTel Ta TeMnepaTyp
KOMIIOHEHT B NOBHICTIO iOHi30BaHiil MPOCTOPOBO-01HOPiNHIH N1BOKOMIIOHEHTHIN M1a3mi. Jlocainkenns
NMPOBOJMTLCS HA OCHOBI y3arajbHeHoro Mmeroay Yenmena—EHcKora, sikuii 103B0/1siE HAM BPaXOBYBaTH
NMPOCTOPOBO-0AHOPI/IHI pesakcauiiini nmpouecu. B jiTepaTypi 1IMpPoKo BUKOPUCTOBYETHCSA HAOIMKEHHS
JokajabHoI piBHoBaru (HJIP) npo Te, mo npocropoBo-oanopiaHi pynkuii po3noainy kommnonent (PPK)
€ MaKcBeJiBCbKHMH 3 3aJleXKHMMH Bil 4yacy HIBHAKOCTSIMH Ta TeMmepaTypamMu KoMmmoHeHT. Hamii
nonepeaHi cTaTTi npucBsiveHi 004ncaenHo nonpasok 10 HJIP B pamkax siniiiHol Teopii penakcanii. B
niif cTaTTi MM BUBYA€MO Teopilo, IKa € KBAJAPATHYHOIO M0 Majaux BinxmwieHnsax (MB) temmeparyp Ta
IIBU/IKOCTEIl KOMIIOHEHT Bifl iX PIBHOBAaKHUX 3Ha4YeHb. O0uuc/IeHO BHEeCKH, sIKi 1A Teopist nac y ®KP
Ta y 4yacoBi piBHsaHHA 111 MB. Ha nesxomy erami eBostonii cucTeMH 1i BHECKH Y T'0JIOBHOMY HOPSAIKY
3a MaauM BinHomeHHAM Mac (BM) ejiekTpoHa ii ioHa MOXYTb OyTH NOPiBHAHHHUMM 3 HALIMMHU
nonpaskamu 10 HJIP y 6iibm Bucokux mopsiakax 3a BM, ski o6uuciieHi B paMkax JiHiiiHOT Teopil
peiakcauii.

Kawouosi cioBa: kinernune piBHsAHHA Jlangay, y3arampHeHuit Meron Yemnena—EHckora, moBHICTIO
iOHI30BaHa IPOCTOPOBO-OJHOPIAHA TIIa3Ma, JIIHIHHA peNnaKcarlis, HeliHiiHa peraKcaris.

Ha ocHoBe knHeTHYECKOr0 YpaBHeHus JIangay u3y4yaercs: Peslakcalusi CKOpPOCTeil H TemnepaTyp
KOMIIOHEHT B IIOJIHOCTbI) HOHH3HMPOBAHHOII NPOCTPAHCTBEHHO-OJHOPOMHON JBYXKOMIIOHEHTHOM
miasme. Mccienopanue npoBoJuUTCS Ha OCHOBe 00001eHHOro Merona Yemmena—JHckora, KOTOPBIi
MO3BOJIsIeT HAM YYHMTBIBATh MPOCTPAHCTBEHHO-OJHOPO/AHBbIE peJaKCalUOHHbIe TIponecchl. B
JIMTepaType WMIHMPOKO MCHOJb3yeTcsl NpuOIuKeHHe JokaiabHoro paBHoBecusi (IVIP) o Tom, uTto
NPOCTPAHCTBEHHO-OHOPOAHbIe  QyHKIHMH  pacnpeneienusi kommoHent (®PK) sBasiiores
MAKCBE/JIOBCKHMH € 3aBHCAIIMMH OT BpeMeHH TeMIepaTypaMH H CKOPOCTSIMH KoMmoHeHT. Hamm
NnpeabIIyliMe CTATbU NOCBSIIIEHbI BblYHcIeHUI0 nonpaBok k IIJIP B pamkax juHeiiHoil Teopum
peirakcanuu. B 3T0if cTaTbe MBI H3y4aeM TeOpHMIO, KOTOpasi sBJsieTcsl KBAAPATHYHOH IO MaJbIM
orkyioHeHusAM (MQO) ckopocTeii 1 TeMnepaTyp KOMIIOHEHT OT X PABHOBECHBIX 3HAYeHU. BbrunciieHbl
BKJIQ/IbI, KOTOpbIe 3Ta Teopusi AaeT B ®PK u Bo BpemenHble ypaBHeHusi Ajass MO. Ha Hexkoropom
JTane 3BOJIOLUM CHCTeMBbl 3TH BKJaAbl B IVIABHOM MOPS/IKe N0 MAJIOMy OTHOLeHHI0O Macc (OM)
3JIeKTPOHA M HOHA MOIYT ObITH CPaBHHMBbI ¢ HammMu nomnpaBkamu k IIJIP B Gosee BBICOKHX
nopsiakax no OM, KoTopble BbIYHC/IEHBI B pAMKaX JHHEHOI Teopuu pejaKkcanuu.

KnroueBble cioBa: kuHeTnueckoe ypaBHeHwe Jlammay, o6oOmeHHbli Meron Yemmena—-OHckora,
MOJHOCTBI0 MOHU3MPOBAHHAS MPOCTPAHCTBEHHO-OJHOPOIHAS IUIAa3Ma, JMHEHHas pelaKcalys, HeMHeHHas
penakcanus.
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1. Introduction

Component temperature and velocity relaxation in spatially homogenous completely
ionized two-component electron-ion plasma is investigated on the basis of the Landau
kinetic equation [1]. This equation is widely used in plasma kinetics, for example for the
investigation of relaxation processes in plasma and for the investigation of transport
phenomena in plasma [2-5].

The pioneering investigation of the relaxation phenomena in spatially homogenous
plasma was made by Landau [1]. He derived his well-known kinetic equation and made
an assumption that component distribution functions (CDF) in the spatially homogenous
case are Maxwellian ones with time-dependent component temperatures. He also
obtained the temperature relaxation rate in the framework of his assumption. Later in
book [2] the case of different component velocities was investigated, and it was assumed
that spatially homogenous CDF are Maxwellian ones with time-dependent component
temperatures and velocities:

n (p-m,v,)’
flo_ Ta  oyp| T _"a’a) |
® (2am,T,)" eXp[ 2m,T, } 0

This assumption is called the local equilibrium assumption (LEA). It is widely used
in the literature. On the basis of the LEA the velocity relaxation rate was obtained in [2].
This assumption was used by Braginsky [3] during his calculation of plasma kinetic
coefficients. Note that the results of modern investigation [4, 5] coincide with the
Braginsky ones in the case of small gradients. This assumption is used in book [6], etc.

However, it can be shown [7] that the CDF of the LEA are not exact solutions of the
Landau kinetic equation. They are only a solution of the leading order in the small square
root of the electron-to-ion mass ratio o,

c=4m,/m <<I. )

In [8] corrections to the CDF and to the temperature and velocity relaxation rates are
obtained in higher ordersin .

The above-mentioned discussion is devoted to the linear relaxation theory, i.e. to
the theory where only linear terms in small deviations of the component temperature and
velocity from their equilibrium values are investigated. In this paper we investigate the
guadratic terms in such deviations. The investigation is made on the basis of the
generalization [9] of the standard Chapman—Enskog method [10]. In the general case this
generalization allows us to account for the spatially homogenous relaxation of the system
to the standard hydrodynamic state. In this paper we investigate only the spatially
homogenous case, and thus we deal only with the spatially homogenous relaxation to the
equilibrium state of the system. Quadratic relaxation contributions to the CDF and to the
time equations for small deviations of the component temperature and velocity from their
equilibrium values are obtained. This problem is an important one because at some stage
of the system evolution these contributions in the leading order of ¢ can be comparable
with our corrections to the LEA [8], calculated in the framework of the linear relaxation
theory.

The paper is organized as follows: in Sec. 2 the basic equations of the theory are
given and the generalization of the Chapman-Enskog method is described, in Sec. 3 our
results for the linear relaxation theory are given, in Sec. 4 the investigation of the
quadratic relaxation theory is made and in Sec. 5 the conclusions are presented.
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2. Basic equations of the theory and generalization of the Chapman-Enskog method

The Landau kinetic equation [1] for spatially homogenous completely ionized
electron-ion plasma has the form

t ap(t)_l (f(t))a
a2 of oy i_ﬂ
1, ()= 2neaLZe J'd { - 6pk ~f, apak}an(m - ]

an() (u6 —u)/u, e =—e, g =z¢ 3)

where f_ (x,t) is the distribution function of the a™ component of the plasma (a, b,

c,... =g,i), I, isthe Landau collision integral, e is the elementary electric charge and

L is the Coulomb logarithm.
By the standard way [11], the component particle densities, velocities and
temperatures are defined in terms of the CDF:

nazjdapfap, manauan_jd3pfappn, €, gnT +;m no _jd pfap )]

where n,, and ¢, are the a™ component momentum and energy density, respectively,
and ¢,, = p*>/2m, .

The mass velocity v, and the temperature T, which describe the system in the
standard hydrodynamic case, are defined [11] as

3 1
TCnEZJ‘fappndSp:Unp' €= Zj.fap apd p:EZnaT—"_EzmanaUZ (5)
In the spatially homogenous case expressions (3) — (5) give
a[naZO, atDnZO, atT :O’ (6)

so n, do not depend on time and they are the equilibrium component particle densities,
the velocity v, and the temperature T are the equilibrium temperature and velocity of the
system. In what follows we use the reference frame where v, =0.

We investigate component temperature and velocity relaxation at the end of the
relaxation processes, so the deviations of the electron temperature and velocity from their
equilibrium values are assumed to me small and estimated by a small parameter p :

1=T,-T, U, =v,-v,, T~uT, u~pfT/m,, p<<1. (7
Equations (3) — (5) give the following time equations for t and u, :
0,1=2(Q, —R,Uu,)/3n,, au, =R, /mn, (8)
where Q, and R, are the component energy and momentum sources:
=[d®pp 1y, (), Q=[d®pe,l, (f); D .Rn=0, > Q=0; (9
the last two expressions in (9) follow from (3).
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As known [2], the reduced description parameters (RDP) of the system are the
component particle densities, velocities and temperatures. On the basis of (3) — (5) it can
be shown that

v, =v, -2c°u,, T T—ZT—IT]Zl+ZG /3 (10)

(here, the electroneutrality condition n, =zn, is taken into account). So the ion velocity
and temperature can be expressed in terms of n,, T, v,, u, and z. Note that n_, v,
and T are constant equilibrium parameters, thus we can choose the system RDP as
u, (t) and z(t) and write the corresponding functional hypothesis [10]:

foo (1) —=— T, (U, (1), 2 (1)), 7o <<7, <<7 (11)

t>>7,

where 7, is some characteristic time which is much shorter than the velocity relaxation
time 7, and the temperature relaxation time z; .

On the basis of (11) the Landau kinetic equation (3) at times t >>z, (we investigate
the system behavior only at such times) can be rewritten:

2 A (00) o oy, 1 A
3n ot ¢ mon, ou,

e e’ e

Ry =1, (f(u,7)). (12)

In what follows, equation (12) is investigated in a p perturbation theory:

fo = £+ 10+ 10 +0(u?), £~ (13)

ap

The additional conditions for the functions f_ (u,t) follow from (4), (7) and (10):

n.m.u, (Sae - 6ai =J.d3 pp, fap (U ’E)
3n,T +(3n,7+m,n,u?)(3, —8,)=2[d° pe,, f,, (u,7). (14)

Such a method of investigation is a generalization of the standard Chapman—Enskog
method [10] similar to [9]. It allows us to account for relaxation processes in a spatially

homogenous plasma. The obtained integral equations for f, (u,t) in different orders in
p are analyzed in a o perturbation theory with additional use of the Sonine polynomial
expansion, expressions (14) are also taken into account. The o perturbation theory is
based on the standard estimates p,, ~/m,T .

Obviously the equilibrium CDF are Maxwellian ones with the equilibrium system
parameters (we use the reference frame v, =0):

n, -
fa(pO) W Wy = —MeXp(_BSap ) » B=T K (15)
(27m, T’

functions (15) obey the additional conditions (14) in the leading order in pand on the
basis of (3) it can be shown that I, (w) =0, so functions (15) are indeed the equilibrium
solution of the Landau kinetic equation.
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3. Linear relaxation theory
This section describes our results [7, 8] which are devoted to the linear relaxation
theory. The functions f. are sought as

8 =w, (A (p)t+B, (P)u,), A (P)=A (Bey). B, (p)=p,B, (Be,). (16)

the last two expressions in (16) follow from the rotational invariance. It can be shown that
in the framework of the linear relaxation theory the time equations for u,,t are

(at ) =1, (8u,)” =au

/’Lu :Zb{pl’ bl eb/mene ' ﬂ'r 22 ep' /3n (17)

the integral brackets {g, h},, are defined on the basis of the linearized collision integral
operator Kab

Mac(pi p’)ESIaP/SfC' Wp' ap aC(p p)__WC'MaC(p’p')'
K.hy = [d*p'K,, (p. p)hp, {9,.n,}, =[d°pw,g,Kh, . (18)

The integral equations for the functions A, (p) and B,,(p) follow from (12), (17) and
(18):

7\‘T Aa (Bsap ) = Zb Ranb'Ab (ngp ) ' }\‘u pn Ba (Bgap ) = Zb Izab pn Bb (ngp ) ) (19)
Equations (19) were investigated in [7,8] and we obtained the following results with
consideration the electroneutrality condition n, = zn, :

A (Be,, ) =—BS!” (Be,, ) +3v22B(2+1)S}* (Be,, ) o* + O(o*),

A (Bey, ) =2BS}” (Bey, ) + 2v2 (2 +1) 27BS;” (Bey, ) o + O ("),
A= (2/3—02 —3x/§202)A02 +0(0®), A=2"7"(z+1)ne’Lam T,
B, (Bsep):B—3zB(22—1)(3z+4\/§)_183/2 (Be, )o* +0(s*),

B, (B, ) =—2Bo” - 328SY” (Be,, ) o* /5+0(o°),

4,42-2 , 2z-1 J2mnz%e'L 9
A, = -62 R (20)
3773 32+42 Jm, T2

sz\P+O(G4), Y=

where S (x) are orthogonal Sonine polynomials:

(e—x cx+n J‘efxx S ( )S (X)dxzw&m.. (21)

1 d"

Sl (x)=—e"x"
2 (%) n! dx"
Expressions (20) in the leading order in o coincide with the well-known LEA
results [1, 2], but we obtained corrections to these results in higher orders in . Due to
the corrections to the CDF we refined the o* term of A, and the &° term of A, in

comparison with the LEA.
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4. Quadratic relaxation theory
This section is devoted to quadratic contributions in pto the CDF and to the time
equations for © and u, . At some stage of the system evolution such contributions in the

leading order in o can be comparable with our corrections to the LEA from the previous
section, because although those corrections were obtained in the linear theory in p, they

are corrections of higher orders in . The functions fa(pz’ are sought as

o) =Wy (AT (P)7* + AL (p) 1, + Ay (P)uuy ), AT ()= AT (Bey ).
Tu(p) pnA;U (Bgap) nl( ) 8nIAaA(Bgap)_i_hnlp B(B p) (22)

where h = p,p, - p°3, /3. The structure of the functions A™(p), A¥(p) and A% (p)

follows from the rotational invariance.
The LEA results for fa(pz) can be obtained by the use of the Taylor expansion for the

LEA CDF (1):
A" (p)=PB?S (Be ). A™(P)=2"B"S}" (Bey )
As (p)=-m,B3,S) (Be,, ) /3+ BNy, /2, AL (p)=-B’SY” (Bes, ) Py
- (p)=m,zBS;” (Be,, )3, /3+ 2°B’hy,0 /2, AT (p)=-2"p*SY* (B, ) po®.  (23)

On the basis of (8), (16), (17) and (22) it can be shown that the quadratic contributions to
the time equations for © and u, are

(0u,)” =Gy, /mn,, (8,1) =2(G™7* +Gy'u,u, ) /3n, +2m,u° /3;

nl ~n

09y 8ga 6hc ah
O (N9, )=[d*pw,, cp( " _h, P jx

xDy (p/m, = p'/m.), Vo (hy.9,) zjd PO, (.9, ).
W, (h,.9,)=[d*pp©,, (N,.9,)/m, ,

Gy =2ne’LY” e’ (V,, (L A" (p))+V.., (A(p),B, (p)));

" = 2ne? LZe ( (LA™ (p))+ W, ( A(p),A(p))/z),

Gy =2me’LY” e? (W, (LAY (p))+W,. (B, (p) B (p))/2). (24)

The integral equations for the functions A (p), A, (p) and Ay (p) follow from
(12), (16), (17) and (24):

2A, (Be,, )G™ /30, — 20 AT (B, ) == K A™ (Begy ) -
—nelLw, > ef 60,.,,, (A(p).A(p))/ap, .

By, (P)Giy /m.n, — (A, + 2 ) AT (P) =2 Ki AT () -
—2melLw,, > 2 00, (A(P). B, (p))/op, .
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~2h, A% (p)+ A, (p)(2GY /3n, +2m1,5, /3) ==Y K, A% (p)-
—melLw,, Y €200, (B, (p ,B,(p))/apm, (25)

These equations are investigated in a o perturbation theory with additional use of the
Sonine polynomial expansion:

AT (Beg )= 0 0mMSY (Bey ), AL (Bew ) =D, 10 90 ™S (Bey, ),
A:/Li (Bsap)ZZn s>0 g::(n)SI/Z (Bsap) ! u; (Bgap)ZZn $>0 g;:(n)SS/Z (Bsap) (26)

where g™ ~c". Expressions (14) in the second order in p are the additional conditions

to equations (25). We restrict ourselves to the calculation of the leading order in o for the
functions (26). The following results for the component CDF are obtained:

A;T(p)zﬁz(zzéi‘,ﬂi +6ae)S§/2 ([38 )+O(G),
ai (P)=—m,ps;” (Bsep 8,1 /3+ Ny, 0iss” +0(o),
g% =P (1-2v22/3) /2 p)=—p’ (1+3z/4\f) D3 (Be,, )+ O(o).
w (p)=(m.zBsy” (e, )/3+o )8, +hn,p(gi“§;4>+o(05)),
Gios” =—22055"0" [5+2°p%c" /2, AT (p)=-2°p*p,S}* (Bep )o” +O(c®) . (27)

Here the results for the delta-terms of A, (p) and for A{"(p) in the leading order
in o are exact solutions and all the other results in (27) are the results of the one-
polynomial approximation. As seen, only the results for A" (p), A" (p) and the delta-
terms of A, (p) coincide with the LEA (23), so in the framework of the quadratic

relaxation theory the LEA is not a solution of the Landau kinetic equation even in the
leading order in .

The quadratic contributions to the time equations can be calculated on the basis of
(20)-(22), (24) and (27):

(8:7)” =(ABo” +0(c°))7* +(8m,¥/9+ O (o))u’

(0,u)"” =(2(1+ 32/42) p +O(c))’cu|. (28)

Although we restrict ourselves to the leading order in o, equations (24) and (25)
allow us to obtain results in higher orders in ¢ because they contain the corrections (20)
of higher orders in o to the well-known results of the linear relaxation theory.

5. Conclusions

Component temperature and velocity relaxation in spatially homogenous completely
ionized two-component electron-ion plasma is investigated on the basis of the Landau
kinetic equation. The relaxation is investigated up to the second order of smallness in the
small relaxation parameters t, u, .

Contributions quadratic in t, u, to the CDF (27) and to the time equations for t,
u, (28) are investigated. Integral equations (IE) for each part of the CDF are obtained.
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Although we restrict ourselves to the calculation of these contributions in the leading
order in o, the obtained IE allow us to obtain results in higher orders in ¢ because they
contain the corrections (20) of higher orders in o to the LEA results in the linear
relaxation theory.

It is shown that even in the leading order in o the LEA CDF are not solutions of the
Landau kinetic equation in the framework of the quadratic relaxation theory. The results

for the delta-terms of A, (p) and for Aj"(p) are exact solutions of the Landau kinetic
equation and they coincide with the LEA. The other parts of the CDF are calculated in the
one-polynomial approximation. The one-polynomial result for A’ (p) coincide with the

LEA, but the result for A}'(p) and the results for the traceless terms of A, (p) do not
coincide with the LEA even in the leading order in o and in the one-polynomial
approximation. It can also be shown that the IE for the functions A7, (p) are Fredholm

IE of the first kind. The results for the time equations are obtained on the basis of the
results for the CDF. As seen (28), the quadratic terms decrease the relaxation rates of the
temperature and velocity relaxation.

At some stage of the system evolution these corrections can be comparable with the
corrections (20) of higher orders in o which are obtained in the framework of the linear
relaxation theory, so the problem under consideration is an important one. The results of
the paper can be taken into account in the investigation of the relaxation of plasma to the
standard hydrodynamic state in the spatially non-uniform case.

References

1. Landau, L. D. Kineticheskoe uravnenie v sluchae kulonovskogo vzaimodeystviya [Text] /
L. D. Landau // ZhETF, —1937.-Vol. 7, —P. 203 - 209.

2. Rukhadze A.A. Principles of Plasma Electrodynamics [Text] / A. A. Rukhadze, A. F.
Alexandrov, L. S. Bogdankevich. —2nd edition. — Moscow: URSS, 2013. — 504 p.

3. Braginsky, S.I. Javlenija perenosa v polnost'ju ionizirovannoj dvuhtemperaturnoj plazme
[Text] / S.1.Braginsky // ZhETF — 1957. — Vol. 33, — P. 459 — 472.

4. Brantov A.V. Nonlocal Transport in Hot Plasma. Part | [Text] / A.V. Brantov, V. Yu.
Bychenkov // Plasma Physics Reports. — 2013. — Vol. 39, No. 9. — P. 698 — 744.

5. Brantov A.V. Nonlocal Transport in Hot Plasma. Part Il [Text] / A.V. Brantov, V.Yu.
Bychenkov // Plasma Physics Reports. — 2014. — VVol. 40, No. 7. — P. 505 — 563.

6. Zhdanov V.M. Processy perenosa v mnogokomponentnoj plazme [Text] / V. M.
Zhdanov. — Moscow: Fizmatlit, 2009. — 280p.

7. Sokolovsky A.l. To the Landau theory of relaxation phenomena in plasma [Text] / A. I.
Sokolovsky, V. N. Gorev, Z. Yu. Chelbaevsky // Problems of Atomic Science and Technology. —
2012. — Series: Nuclear Physics Investigations, No. 1. (57) — P. 230 — 234.

8. Gorev V.N. Relaxation Phenomena in a Homogenous Plasma [Text] / V. N. Gorev, A. I.
Sokolovsky // Conference Proceedings of the International Conference on Mathematical Methods
in Electromagnetic Theory. — Dnipropetrovsk, 2014. — P. 221 — 224.

9. Gorev V.N. Investigation of nonequilibrium processes in vicinity of hydrodynamic states
[Text] / V.N. Gorev, A.l. Sokolovsky // Proceedings of Institute of Mathematics of NAS of
Ukraine, Kyiv. — 2014. - Vol. 11, No. 1. - P. 67 — 92.

10. Colangeli M. From Kinetic Models to Hydrodynamics: Some Novel Results [Text] / M.
Colangeli — New York: Springer, 2013. — 104 p.

11. Silin V. P. VVvedenie v kineticheskuju teoriju gazov [Text] / V. P. Silin. — 3rd edition. —
Moscow: URSS, 2013. — 344 p.

Received 15.03.2015.

20



