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THE MODEL OF DARK GALACTIC HALO BASED ON EQUILIBRIUM
DISTRIBUTION FUNCTION

The model of a galactic halo as a statistical ensemble of small collisionless particles moving in
their own gravitational field is constructed. The particles take part only in the gravitational
interaction and cannot be detected by modern methods of registration. However, their amount is so
great that they make a significant contribution to the mass of the galaxy and its gravitational field,
forming a halo of dark matter (DM). The stationary solution of the kinetic equation for such a
system leads to the equilibrium Maxwell-Boltzmann distribution function. Using this distribution
function, we construct a model of the galactic halo of DM in the form of spherically symmetric
equilibrium ensemble of moving particles. Incidentally, for the effective equation of equilibrium
arising in it, according to the ""hydrodynamic analogy," the velocity dispersion plays the role of
"pressure." The proposed model corresponds to the phenomenological model with a linear equation
of state. At the same time, the plateau of the rotation curves is interpreted as an observed
manifestation of the DM.

Keywords: rotation curves, dark matter, Kinetic equation, Maxwell-Boltzmann distribution, the
equilibrium equation.

Byayerbess Mojeb TajJaKTHYHOIO rajio SIK CTATHCTHYHOI CYKYNHOCTI MAJHMX YACTHHOK 0e3
3iTKHEeHb, 10 PYyXalTbecsl Y BJacHoMy rpasBitanilinomy mnoui. Ili vacTtmHkmM, okpim sk
rpaBiTaniiHUM YHHOM, Hi 3 YUM He B32a€MOIIOTH i He MIATAKTHCA CYYACHUM METO/IaM peecTpairii.
IIpoTe ix HacTiIbKK 0araTo, 110 BOHU 320€3Me4yI0Th iCTOTHHI BHECOK Y MOBHY MAacCy FaJJaAKTHUKH Ta
il rpasitauiiine mnose, yrBoprorounm rano TemHoi Martepii (TM). CrauionapHuii po3B'si30K
KiHETUYHOIr0 pPiBHAHHS JJIsI TAKOI CHCTEeMHM NPU3BOIMTH A0 PiBHOBa:XKHOI (yHKUil po3moaiay
MakcBea-boabumana. 3 BUKOpHCTaHHAM mi€i  ¢QyHKuOii po3mogity Oyayerbcsi Moaeib
rajakTuyHoro rajgo TM y Burasai cepuyHo-cMMeTPUYHOI PiBHOBA’KHOI CYKYNMHOCTI YaCTHHOK.
TyT BuHuKa€ eeKTHBHE PiBHSIHHS PiBHOBAaru, B IKOMY, 3riiHO 3 ''riipoAnHaMiuyHOI0 aHajOri€I0",
JUcHepciss MBHAKOCTell BHMKOHYE poJb '"Tucky'. 3ampomonoBanHa Mojesdb Bianmosizae
(heHoMeHONOrIUHIN MogeJIi 3 JiHIHHUM piBHSIHHAM cTaHy. IIpy n1bOMY IIATO Y KPUBUX 00epTaHHS
iHTepnpeTyeThes sIK cnocTepeskyBaHuii mposis TM.

KiouoBi cioBa: kpuBi oO0epTaHHs, TeMHa MaTepis, KIHETUYHE PIBHSAHHS, po3noaia Makcsesuia-
BonbuMaHa, piBHSHHS pIBHOBAry.

Crpoutcss MoJesb TaIAKTHYECKOI0 Tajl0 B BHJAE CTATHCTHYECKOH COBOKYNMHOCTH MAJBIX
0ecCTOTKHOBUTEIbHBIX YACTHI, KOTOpPbIe ABH/KYTCS B COOCTBEHHOM IPaBHTALIMOHHOM MoJie. DTH
YacTHILbI, KPOMe KaK FPABHTAIIMOHHBIM 00Pa30M, HU ¢ YeM He B3aHMOJIeiiCTBYIOT U He NOMIAK0TCS
COBPEMEHHBIM MeToAaM perucrpanud. OIHAKO MX TaK MHOIO, YTO OHH BHOCAT CylIeCTBEHHBINH
BKJIAJ B Maccy TUIAKTHKH M e¢ IpaBHTALHOHHOe IOJe, 00pa3ys raino TtemHoili matepuu (TM).
CrauMoHapHOe pellleHHMe KHHeTHYeCKOro YpaBHeHHs [JIA TaKoil cHCTeMbl NPHBOAMT K
paBHOBecHOM (yHKuus pacnpenenenusi Makcpesia-boabnvana. Ha ocnoBe 310l (pyHKIuM
pacnpeeieHusi CTPOMTCSE MOJeJIb rajakTuieckoro rajo TM B Buae chepryecku-CHMMeTPHYHOM
PABHOBECHO! COBOKYNHOCTH ABWKYIIMXCH 4acTul. 3Jech BO3HUKaeT 3¢ (eKTHBHOE YpaBHeHHe
paBHOBecusi, B KOTOPOM, COIJIACHO ''TMApOAMHAMMYeEcCKOi aHajoruu', Aucmepcusi CKoOpocTei
urpaet poJb "'nasjenus'". IlpennoxeHHass Mofie/Ib COOTBETCTBYeT (peHOMEHOI0rHYeCcKOoii MoesIH ¢
JIMHeHbIM ypaBHeHHeM cocTosiHus. IIpu 3TOM IIATO Yy KPUBBLIX BpallleHHs HHTepIpeTHpYyeTcs:
Kak HaO/oaaemMoe nposisiaenne TM.

KioueBble cioBa: KpuBble BpallleHMs, TEMHAas Marepus, KHHETHYECKOe YypaBHEHUE,
pacnpenenenne MaxkcBemna-bonsiimana, ypaBHeHHE paBHOBECHSL.
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1. Introduction
The rotational speed V of an object on a stable Keplerian orbit with the radius r
around the galaxy can be found from the formula
V =,/GM/r 1)
where G is the gravitational constant. Thus, if the radius r lies outside the visible part of
the galaxy, one might expect that the rotational speed v ~1/\/F. This disagrees with the
data of observational astronomy where we have V =const. For our solar system, this
velocity is V ~220km/s. The above inconsistency is explained by the presence of a

hidden mass - dark matter (DM) distributed in the form of a dark galactic halo (see, e.g.
[1,2]). It cannot be otherwise detected, except through its gravitational impact on stars
and others objects. Let us assume that DM is distributed in the galaxy in a spherically
symmetric manner. Then the mass of DM inside the sphere of radius r is M =M(r).

Here r is a distance from the galactic center. Thus, ignoring the visible matter, we have

V= w = const. (2)
Hence
2

M (r) =VEr. 3)

On the other hand, the mass of the DM sphere is

r

2

M (r)=4n[rppy (r)dr 4)

To
where pp,, (r) is the density of the DM, r, is the lower limit of the plateau in the rotation

curve. From these two relations the following formula for the density of the DM arises
2

Ppm (r) (r>r). (%)

 4nGr?

Let us find the gravitational field ¢ of DM. In the Newtonian gravity it is described by
the Poisson equation

In the spherically symmetric case, for the density of DM (5) we have ¢ =V?In r—%+cz.

The second term of this formula corresponds to the central source. We are looking for the
gravitational potential generated by a cloud of DM withr >r,. Therefore, we can

setC, =0, and choose the constant C, so that ¢(r,)=0. Thus, the assumption of a

spherically symmetric distribution of DM and the fact of the plateau on the rotation
curves lead to the potential

0=VZIinLt (r>n). (8)

fo
Let us now consider the equilibrium conditions of DM. To do this we must make an
assumption about the nature of DM. The simplest assumption is reduced to the
introduction of a DM cloud in the form of an ideal gas of nonrelativistic particles with
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density p and pressure P. Then the equilibrium condition for the cloud has the form
VP = —ppu Veo. Hence, the equilibrium condition of a spherical cloud of DM follows

dP do

Bl . 9
dr Pou dr ©)
Using the expression for the density (5), we find the pressure of DM
V4

= r>rn), 10
v B G ) (10)

whence using (5), we obtain a linear equation of state for the DM in the form

1

The upper boundary of DM cloud can be estimated with the condition ppy > pgpy Where
peom 1S the density of the intergalactic DM. Then, we obtain the radius of the DM cloud

-V Itis obvious that the described phenomenological model of DM is not

e =
2,|nGpgpm

complete. The meaning of DM pressure is not clear as well.

2. The model of dark galactic halo

We now consider the DM as the collision-free gas of nonrelativistic particles. By
assumption, they are neutral, spinless, and massive particles of very small sizes and they
can interact only by gravitation. Elementary black holes (BH’s) with masses of order of
the Planck mass can be considered as a candidate to be such particles. They can possibly
be the remnants of BH’s evaporation. Stable elementary BHs may play the role of
maximally heavy elementary particles and, possibly, DM particles (primordial BHs,
maximons, friedmons etc.) [3-7]. Elementary BH’s are characterized by an extremely

small scattering cross-section of the order of 107 cm? [5].
We apply the kinetic approach [1, 8, 9] to the ensemble of such particles. Here, the

basic value is the distribution function (F,v,t) where v is the velocity and is the
radius-vector of particles. The particle number density in the space with coordinates
{r,v}is as follows: f(F,V)=Ny(F,V,t) where N is the total number of particles. The
DM mass density is ppy (F,t)=m[f(FV,t)dV where m is the particle mass. The
distribution function satisfies the collisionless kinetic equation
a—w+(v-a—\ilj+(lfoa—\llj:0. (12)
ot or ov
Here F =-Vg is the gravitational force, ¢ is the gravitational potential that satisfies the

Poisson equation (7). This set of equations is the complete set of equations describing a
self-gravitating collisionless system of particles. If the distribution function v (7,v,t) is

found, the components of “stress” tensor can be obtained with using the formula

Ty = M| f v, vpdv. (13)
In the case of the equilibrium configurations, the distribution function and the mass
density are independent of timey =y, (F,V),p=p,(F) and the equation for the
equilibrium distribution function has the form

[Q.%j_[aﬂ.aﬂjzo (14)

or or  ov
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where ¢, is the self-consistent potential satisfying the Poisson equation A, = 4nGp,. In
this case, we deal with anisotropic pressure given by the formula

Strictly speaking, this is not the pressure, but the velocity dispersion!

The equilibrium distribution function is a function of energy E and the other
possible single-valued integrals of motion. In the isotropic case, the distribution function
can depend only on the energy v =y, (E), in this case P, = B, = P, . Then the mass density

and pressure are given by following formulae

Po :47“/5”1? fo(E)(E—%)m dE, Ro :82/5”‘? fo(E)(E_‘PO)S/Z

Po Po
Differentiating the last equality in (16) and comparing the result with the previous
formula in (16), we get the known condition of hydrodynamic equilibrium

dE.  (16)

dRy dog
ar Po dr 17)
which was used above when we considered the equilibrium conditions of a DM cloud. It
is a hydrodynamic analogy [9].
Let us consider a partial solution of the kinetic equation — Maxwell-Boltzmann
distribution [10]

3/2 -2
w(r,v) = AeE0 = Ji(z_r:ej exp[—%{v?ﬂpo (F)B (18)

= jexp(—%cpo (F)Jd?, (19)

6 =KT is the module of the canonical distribution. The function v (F,v) is the probability

density of a certain state of a particle. The mean particle number density in the space with
coordinates {r,v} is described by the formula f (F,v)=Ny(F,v) where N is the total

number of particles in the system. Mass density of the DM in the cloud is given by

mN( m m( v?
bow (F) = m[ £ (.7)dv :Tﬁﬁj jexp[_5{7+% (F)J]dv (20)

where

where m is the mass of DM particle. Then the total mass of the cloud equalstoM =mN .
Hence, we get

pow (F) =5 ™" 1)

The Poisson equation for the self-consistent spherically symmetric field ¢, takes the
form

d’g,  2dgg M —moore
Ap=—7r+——2=4nG—e "7, 22
® dr? r dr B (22)
This nonlinear equation has the following particular solution
20 r
= =—1In|—|. 23
®o = Ppm m ("OJ (23)

Herewith the module of the canonical distribution should be equal
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0 = 2nmGirg % (24)

Potential (23) is similar to the potential (8) of the phenomenological model. Using
the hydrodynamic analogy and comparing these potentials, we obtainezmvz/z. This
expression for the modulus 6 and (24) lead to the relation for the total mass of DM cloud

V2
4nGr?

Hence, using (21) and (23) for the density of dark matter, we obtain expression (5)
that corresponds to the phenomenological picture.

(25)

Mpm =

3. Conclusions

Thus, we can consider as a model of the galactic halo the collision-free system of
very small and very heavy neutral spinless DM particles interacting only by gravitation
(perhaps, primordial BH’s). The ensemble of DM particles satisfies the Maxwell-
Boltzmann distribution. The galaxy has the atmosphere of DM, i.e. the DM galactic halo
that is actually transparent. The DM particle number density in the atmosphere is

_ M -meo/6 _ V2
Npy (1) = 3 e pye—— (26)
In the statistical approach, the velocity dispersion (15) plays the role of pressure P (10). This
pressure provides stability in the phenomenological picture of the halo. This correspondence
is provided by the hydrodynamic analogy following from equations (16) and (17).
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