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ON THE KINETIC EQUATION FOR A MANY-BODY DISSIPATIVE
RANDOMLY DRIVEN SYSTEM

The present paper is based on the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy for many-
body one-component dissipative systems in an external stochastic field. This hierarchy was obtained
recently by Yu. V. Slyusarenko, O. Yu. Sliusarenko, and A. V. Chechkin. These authors obtained also
an analog of the Vlasov kinetic equation for the above-mentioned systems. Namely, they obtained a
kinetic equation up to the first order in small interaction, dissipation and external stochastic field. On
the basis of their kinetic equation they showed that the momentum of the system is conserved and
obtained the kinetic energy of the system as a function of time for some simple cases. They also
discussed under which conditions the Maxwellian distribution is an equilibrium one. This paper is
devoted to obtaining the analog of the Landau collision integral for such type of systems. The kinetic
equation is obtained up to the second order in small interaction, dissipation and external stochastic
field. On the basis of this equation it is shown that the momentum of the Maxwellian gas is conserved in
some simple cases.

Keywords: Landau—Vlasov kinetic equation, small interaction, small dissipation, small stochastic
external field, momentum conservation.

Pobora 0asyerbcs Ha JsaHumlokKKY Boroaw6oBa-bBopna-I'pina-Kipkeyna-Isona  gas
0araTo4aCTHHKOBHX JMCHIATHBHHUX CHCTEM Yy 30BHIIHBOMY cToXacTHuHoMy mnoji. Llei JanHmioxox
HemogaBHo orpumanu 0. B. Cimocapenko, O. 10. Cinocapenko Tta O. B. Yeukin. Lli aBTopn Takox
OTPHMAaJH aHAJOI KiHeTHYHOro piBHAHHA BiacoBa 118 BHINeHa3BaHMX CHCTeM. A came, HMUMH
OTPUMAHO KiHeTHYHe PiBHSIHHSA [0 YIeHIB MepIIoro MopsiAKy 3a MaJHMHU B3a€MOJi€10, AUCHIIALIEI0 Ta
30BHIIIHIM cToXacTUYHUM mnosaeM. Ha ocHOBi c¢BOro piBHSIHHA JJIs AesIKMX NMPOCTHX BHNAIKIB BOHM
NMOKAa3aJIM, W0 iMNyJbC CHCTeMH 30epiraerbcs, i 0OTPUMa/IM KiHeTHYHY eHeprilo K ¢yHkuilo yacy, a
TAKOXK JOCJHIIWIH, 32 SIKMX YMOB PiBHOBa:KHMM po3nofijioM € po3mogin Makcpesia. /lana podora
NpHUCBAYEHA OTPUMMAHHIO AaHAJora iHrerpana 3iTkHeHb JlaHmay s Takux cuctem. 3HaiiaeHO
KiHeTHYHe PiBHSIHHS /10 YWIEHIB APyroro mNopsiAky 3a MaJuMH B3a€EMOJi€I0, TUCHUIIALICI0 Ta 30BHIIHIM
cTOXacTUYHHM nojeM. Ha ocHOBi onep:kaHOro piBHSIHHSI NOKA3aHO, IO iMIYJbC MaKCBeIiBCHKOIO
rasy 30epiraerbcsi 1015 JeIKUX MPOCTUX BUNAJKIB.

KurouoBi cioBa: kinernune piBHsAHHA JlaHmay—BiacoBa, mMana B3aemopisd, Maja AWCHMIALIs, Maje
30BHILIHE CTOXAaCTUYHE I10JIe, 30EPEKEHHS IMITYIIbCY.

Pabdora 0Oa3upyercss Ha nenouke boronwooBa-bopua-I'puna—-KupkByna-UBona  1ist
MHOTOYACTHYHBIX OJHOKOMIIOHEHTHBIX JMCCHIATHBHBIX CHCTEM BO BHEIIHEM CTOXACTHYECKOM HoJIe.
JTa Henoyka HefAaBHO ObL1a moaydyena lO. B. Cialocapenko, A. FO. Cimocapenko u A. B. YeukuHbIM.
ITH aBTOPbI TAK:Ke MOJYYHIH AHAJIOT KHHETHYECKOro ypapHeHust BiiacoBa 1u1s1 HA3BaHHBIX cHCTeM. A
MMEHHO, HMH TOJTy4eHO KHHEeTHYeCKoe YPaBHEHHeE /10 YJICHOB MepPBOro MopsiAka MaJIOCTH 1O MaJbIM
B3aHMO/IeliCTBUIO, TUCCUNIALMY W BHELIHEMY cToXacTuyeckoMmy moJio. Ha ocHoBe cBoero ypaBHeHHs
JUIS1 HEKOTOPBIX NMPOCTHIX CJIYYaeB OHM MOKA3AIH, YTO MMIIYJIbC CHCTEMbI COXPAHMETCSs, H MOJYYHIH
KHHETHYECKYI0 DHEPrul0 Kak (YHKIHIO BPeMeHHM, a TaK:Ke HCCIeI0BAIM, NMPH KAKHX YCJIOBHSX
pacnpeneneHne MakcBesia siBAseTcs PaBHOBeCHBIM. JlaHHas paGoTa mNOCBSAIIEHA MOJYYEHHIO
aHaJIora MHTerpajia crojJkHoBenui Jlanpay nist takux cucrem. IlojyuyeHo KuHeTHYecKoe ypaBHeHHe
10 4YJeHOB BTOPOTr0 MOPAAKAa MO0 MAJLIM B3aHMOJEHiCTBHIO, AHCCHIALIMH H BHEIIHEMY
croxacTuyeckoMy mnoao. Ha ocHoBe BbIBeAGHHOr0 YpaBHeHHsI IOKA3aHO, YTO MMIIYJIbC
MAaKCBeJIJI0BCKOI0 ra3a COXpaHsieTcsl ISl HEKOTOPBIX MPOCTHIX CIy4aes.

KiroueBble cioBa: knHernueckoe ypaBHeHHWe Jlannay—BiacoBa, manoe B3amMopeicTBHE, Mauas
JIICCHUTIAINS, MAJIOE BHEIIHEE CTOXaCTHUECKOE TI0JIE, COXpaHEHHE UMITYJIbCA.
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1. Introduction

Recently Yu. V. Slyusarenko, O. Yu. Sliusarenko and A. V. Chechkin obtained [1] a
Bogolyubov—Born-Green—Kirkwood—Yvon hierarchy for many-body one-component
dissipative systems in an external stochastic field. The investigation of such systems is
important for modern statistical physics, see [1] and the references therein. On the basis
of the obtained hierarchy and the Bogolyubov reduced description method in the case of
weak interaction, weak dissipation and weak external stochastic field they derived an
analog of the Vlasov kinetic equation for the above-mentioned systems. In other words,
they obtained a kinetic equation up to the first order in small interaction, small dissipation
and small external stochastic field. On the basis of their kinetic equation in some simple
cases they showed that the momentum and particle density are conserved, and they
obtained the kinetic energy as a function of time. They also investigated under which
conditions the Maxwellian distribution is an equilibrium one.

As known [2], in the case of a non-dissipative system without any external field the
well-known result is a kinetic equation up to the second order in small interaction. In
contrast to the Vlasov kinetic equation, it contains a term of the second order in small
interaction. Its local part is called the Landau collision integral. The kinetic equation with
the Landau collision integral and the Vlasov self-consistent field is widely used in
modern statistical physics, in particular in the physics of plasma, see, for example, [3,4].
The Landau collision integral is a local collision integral — it is of the leading order in
small gradients of the one-particle component distribution function. It is important to
obtain an analog of the Landau collision integral for dissipative systems in an external
stochastic field. In other words, an important problem is to derive a kinetic equation up to
the second order in small interaction, small dissipation and small external stochastic field.
The importance of this problem is also stressed in [1]. Special attention is paid to local
second-order terms.

An analog of the Landau collision integral for the above-mentioned systems is
obtained. The properties of a spatially uniform Maxwellian gas are investigated on the
basis of the obtained analog. It is shown that in some simple cases the momentum of a
spatially uniform Maxwellian gas is conserved.

The paper is organised as follows. In the section 2 the basic equations of the theory
are given. The section 3 is devoted to obtaining a collision integral of the second order in
small interaction, small dissipation and small external stochastic field. The section 4 is
devoted to the investigation of the momentum conservation of a Maxwellian gas in some
simple cases, and in the section 5 the conclusions are given.

2. Basic equations of the theory

The work is based on the the Bogolyubov—Born—Green—Kirkwood—Yvon hierarchy
for many-body one-component dissipative systems in an external stochastic field which
was obtained in [1]:
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where fi = fi (X, X,-1) is the S-particle distribution function, %, ={x,,p;}, ¥,

iy...d,

are the correlation functions of the external stochastic field (see [1]), and
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Foc[S = _aVaB /axu - aRoc[S /apoc > R= ZISOK[SSN R“B (2)

where V,, =V (|XOc - X|3|) is the interaction potential between the particles in the system,

R is the dissipation function, R, ER(Xoc — X5, Py —pﬁ). Here m is the mass of one

particle in the system and N is the total number of particles in the system. Note that we
consider the case where the average value of the external stochastic field is equal to zero.

The further investigation is based on the principle of spatial weakening of
correlations and on the Bogolyubov functional hypothesis [1,2]:

s (s Xasens X o 1) =z s (X T X £ (1)) 3)

where 7, is some characteristic time which is the time of beginning of the kinetic stage of

evolution. The kinetic equation is a time equation for the one-particle distribution
function. On the basis of (1), (3) it has the form
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The interaction potential V', the dissipation function R and the correlation functions

v, . are assumed to be small, and for simplicity they are estimated by one small

ijiy ...,

parameter & . Obviously,
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here and in what follows, the superscript in parentheses denotes the order in ®. So,
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! J oV, | R,
L”(xl,fl)=$fl(xl)dezfl(xQ)(ax +$J- ®)

If we substitute (8) into (4) instead of L(xl, fl), we will obtain the Slyusarenko—
Sliusarenko—Chechkin kinetic equation which is discussed in detail in [1].

3. Derivation of the second-order collision integral

The aim of this paper is to obtain L* (., f;) . Obviously,

0
A (%) = [ dwe™ K, (42006 1) - 9

After a lengthy calculation we obtain
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where f,"

and f,(x,).

In this paper special attention is paid to the derivation of the local collision integral.
It is the collision integral of the leading order in small spatial gradients of the distribution
function. Local collision integrals play a huge role in modern statistical physics, usually
hydrodynamics up to the first order in small gradients and kinetic coefficients are
investigated on the basis of local collision integrals, see [5, 6]. Also note that the well-

is a cumbersome expression which contains the spatial derivatives of f; (¥, )
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known Landau collision integral is a local one [2]. In the leading order in gradients,
expressions (10) take the form

of
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here and in what follows the superscript L denotes “local”. So, the local collision integral
is given by the expressions
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The functions f£}", fix" and fz(}l,” are given in (11). By straightforward calculation it

can be shown that ZVL) coincides with the well-known Landau collision integral [2], so

in the well-known case where there is no dissipation and no external field, our result
coincides with the result known in the literature. This fact justifies the results (11), (12).

As known, the particle and momentum densities of the system are introduced by
standard definitions:

n=ld'pf,. m=[dppf,. (13)

Obviously, L has no effect on the time equation for n because the integral of the

divergence is equal to zero. In what follows, the effect of L** on the time equation of the
momentum of a Maxwellian gas is discussed.

4. Conservation of the momentum of a spatially homogenous Maxwellian gas in
some simple cases

This section is devoted to the calculation of the effect of L** on the time equation
for the momentum density of a spatially uniform Maxwellian gas. On the basis of the
Slyusarenko—Sliusarenko—Chechkin kinetic equation it is shown [1] that the momentum
of any spatially-uniform one-component dissipative system in an external stochastic field
is conserved in the framework of a simple model where

R,=v(x,—x,)-(p, -p.) /2, ¥(x, -x,)>0. (14)
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As also mentioned in [1], in a spatially uniform system the correlation functions
Y;,.;, depend only on the coordinate differences:

iy i, (X(xl > Xoy oo Xy ): Vi, (Xon‘ — Xy, )’ Isi<j<r. (15)

On the basis of (14) and (15) Slyusarenko, Sliusarenko and Chechkin obtained an explicit
time dependence of the kinetic energy of an arbitrary spatially-uniform one-component
dissipative system in an external stochastic field. They also investigated the conditions
under which the Maxwellian distribution function is an equilibrium one.

As to the investigation of the effect of L*" on the conservation laws, the situation is
much more complicated. So, in order to deal with it, we consider further simplifications
of (14) and (15). For simplicity, we investigate the case where
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The well-known result [2] gives (9, T, ):/ZVL) =0. Using the Fourier transforms and the

property of d-function
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we obtain the following expression for (9,T, )(ZL)
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Substituting the Maxwellian distribution function
£, =n(2mmr) 7 g 02t Q1)

into (20), we obtain
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2 _(p—mv)* +(p,—mv)’
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Introducing the following variables

P, =P, —mv, P, =p, —mv, Y=P,+P,, =P —P; , (23)
we obtain
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Due to the rotational invariance jo d’cjd3zzlkzeitk‘/ me~ T — k @ (k) where @ (k) is
some function of |k| So, (9,m, )(ZL) =0 because the integrand is an odd function of k.

Similarly, it can be shown that (9, T, )(ZL) =0, (o,n )Q“ =0.
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Let us consider the combination where o, =, =...=a =1, o, = ,=..=0, =2.

Then after » integrations by parts we obtain
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Obviously, any combination with s of the o,’s equal to 1 and r—s of the ;s equal to

2 gives the same answer (27). There are C} =r!/((r—s)!- s!) such combinations. So,
using (21), (23) and (27), we have
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here r=3,5,7,... because for an even r due to the rotational invariance we have an
integrand which is odd in k. But for an odd r the following identity is valid:
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> (-1)'¢c: =0, 50 (3,m,)%" =0. Similarly, (9,m,)%” =0. So, the momentum of the

s=1 »w YR
Maxwellian gas is conserved under the conditions (16). Also note that the same
calculations are valid if the correlation functions y;, , and the function y are even

functions of the coordinate differences and such severe restrictions as (16) are not
necessary. So, if the correlation functions y,; , and the function v are even functions of

the coordinate differences, the momentum of a Maxwellian gas is conserved too.

5. Conclusions

An analog of the Landau collision integral is obtained for many-body one-
component dissipative systems in an external stochastic field. In other words, the kinetic
equation is obtained up to the second order in small interaction, small dissipation and
small external stochastic field. This result is an extension of the Slyusarenko—
Sliusarenko—Chechkin kinetic equation, which was obtained [1] up to the first order in the
above-mentioned small parameters.

As known, the local collision integral plays a very important role in modern
statistical physics. For example, usually it is the basis of the hydrodynamics investigation
up to the first order in small gradients. So, special attention is paid to the local collision
integral. The explicit expressions (11), (12) for the local collision integral are obtained. In
the well-known case of a non-dissipative system with no external field, our result
coincides with the well-known Landau collision integral [2].

On the basis of the local second-order collision integral it is shown that if the
correlation functions of the external stochastic field and the function v (see (14)) are

even functions of the coordinate differences, the momentum of a spatially uniform
Maxwellian gas is conserved.

Of course, the investigation of the energy time equation is also of great interest. This
investigation will answer the question under which conditions the Maxwellian
distribution function is an equilibrium one, and it will be made in another paper on the
basis of the obtained second-order collision integral.
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