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NON-EQUILIBRIUM GIBBS THERMODYNAMIC POTENTIAL
OF A MAGNETIC SYSTEM

The Leontovich definition of the free energy of a non-equilibrium system is discussed. In this
approach it is assumed that the system has a definite temperature and is described by some set of
reduced description parameters. It is shown that this free energy is obtained from an equilibrium free
energy in the presence of an external field by a Legendre transformation that makes the field an
internal parameter. The case of a weak non-equilibrium system is considered in details. The obtained
result is applied to an isotropic magnetic system, non-equilibrium states of which are described by the
phonon subsystem temperature and total magnetic dipole moment. Thereby the motion of magnetic
dipoles in the system is taken into account and the temperature meaning is justified. On this basis the
Gibbs non-equilibrium thermodynamic potential is calculated up to the fourth order terms in small
dipole moment inclusive. The obtained Gibbs potential does not meet the requirements of the Landau
theory of phase transitions of the second kind. We suppose that this contradiction is a consequence of
the assumption about isotropy of the system which is broken in magnetic systems.

Keywords: non-equilibrium Gibbs thermodymamic potential; the Legendre transformation; states in an
external field; magnetic system; phase transition.

OoroBoproeTbesi o3HayeHHs1 JleoHToBMYa BiIbHOI eHeprii HepiBHOBa:kHOI cucteMu. B nbomy
nigxoni mepeadavyaeTnesi, WO CHCTEMAa MAa€ MEBHY TeMIEPAaTypy il OMHCYETbCS TEBHOI0 MHOKHHOIO
napaMeTpiB ckopo4yeHoro omucy. [Toka3yerbesi, 10 3a3HaYeHy BiJIbHY eHeprilo Mo;KHAa OTPUMATH 3
piBHOBaKHOI BiIbHOI eHeprii cucTeMH B AeKOMY 30BHILIHBOMY MOJi 32 J0IIOMOI0I0 NepeTBOPEHHS
Jle:kaHapa, 0 poOUTH 30BHILHE MOJe BHYTPIlIHIM napaMeTpoM. JleTajlbHO PO3IJISIAA€THCS BUNAI0K
c1a0Kko HepiBHOBa:kHOI cucTeMH. OTpUMaHMii pe3yJbTAT 3aCTOCOBYETbCS 10 i30TpomHoi MarHiTHoi
CHCTeMH, HEepPiBHOBAXKHI CTAHM SIKOI ONMHCYIOTbCSI TeMIIepaTypol0 miacucreMu (OHOHIB i NMOBHUM
MArHiTHUM JAMIIOJILHUM MOMeHTOM. THM caMUM BpPaxoBY€TbCsl PyX MarHiTHHX AMIIOJIB CHCTeMH Ta
3’sicOBYy€ThCsl ceHe Temnepatypu. Ha uiii ocHoBi po3paxoByeTbcsi HepiBHOBAKHHI TepMOAMHAMIYHMIA
norennian [i60ca 3 TOUHICTIO 10 BHECKIB YETBEPTOro MOPSAKY BKJIIOYHO 32 MAIMM JHIOILHUM
MOMEHTOM cucTeMH. OTpuMaHHMii NoTeHUiad He 3a/0BOJIbHAE BUMoram Teopii Jlanaay ¢a3zoBux
nepexoaiB apyroro poay. Beaxkaemo, mo me mpoTHpivyys € HACTiIOK NPUNyLIeHHsI PO i30Tpomiio
CHCTeMH, SIKa B MATHITHUX CHCTEMAaX MOpyLIeHa.

Kuaro4oBi ciioBa: HepiBHOBaXKHUH TepMoAMHaMHuHMIT noteHuian [166ca, nepersopenHs Jlexanmapa,
CTaHH y 30BHILIHBOMY I10JIi, MarHiTHA cucTeMa, (Pa30BUil mepexij.

OO6cy:kaaercst onpeaenenue JleonToBuya cBo0OAHOI 3HepruM HepaBHOBecHOH cucTeMbl. B 3TOM
NMoAXo/e MpeanoJaraercsd, 4YTo CHCTeMa HMeeT ONpeleJeHHYI0 TeMIepaTypy M ONHChIBaeTcs
HEKOTOPBIM MHOKeCTBOM IapaMeTPOB COKpallleHHOro onucanus. IlokasbiBaeTcs, 4TO 3Ta CBOOOAHAsN
JHeprus MoJiy4yaercsi M3 PaBHOBECHOH CBO0OOIHOIl JHEPIHH CHCTEMbl B HEKOTOPOM BHeEIHEM IoJje ¢
NOMOIIbIO NpeodpazoBanus JlexkaHapa, KoTopoe jAe/aeT BHellIHee 10J1¢ BHYTPEHHHM HapaMeTpoM.
JeTtanbHo paccmaTpuBaeTcsl ciay4yail ci1a0o HepaBHoBecHO# cucremsbl. IlonydeHHbIH pe3yJabTar
NPUMeEHsIeTCsl K H30TPONHOii MArHMTHOI cHcTeMe, HEPABHOBECHOE COCTOSIHME KOTOPOi OnuchbIBaeTcs
TeMIepaTypoii PaBHOBECHOIl ()OHOHHOH MOACHCTEMBbI M MArHHTHBIM JUIOJILHBIM MoMeHTOM. Tem
caMbIM YYHMTBIBACTCSl ABUKEHHE MATHHTHBIX JHIIOJIEH CHCTEMbI M BBISICHSIETCSI CMBICJI TeMIIepaTypbl.
Ha 370ii ocHOBe BbIUMC/IAIETCS] HEPABHOBECHBIH TepMOIHHAMUYecKuii moTeHuuaa I'ndoca ¢ TOUHOCTHIO
A0 BKJIAJI0B 4YeTBEPTOro NopsiKa BKJIIOYHMTEIBLHO 10 Maja0My MATHUTHOMY IHIOJILHOMY MOMEHTY
cucrembl. IloaydyeHHbIl NOTeHUHAJT He YAOBJeTBOpsieT TpedoBanusiMm Teopun Jlanaay ¢as3oBbIx
nepexogoB BToporo poaa. Iloiaraem, 4To 3T0 NpOoTHBOpeYHe ABJSETCH CAeACTBHEM NpeanoI0KeHHs
00 H30TPONHHU CHCTEMbl, KOTOPasi B MATHUTHBIX CHCTEMaX HapylIeHa.

KnioueBble cJ0Ba: HEPaBHOBECHBI TepMoAMHaMuueckuil norteHuuan ['ub6ca, mpeoOpasoBanue
Jlexanapa, COCTOSIHMS BO BHEIIHEM I10JI€, MArHUTHAs CUCTeMa, (ha30BbIH Iepexo.
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1. Introduction

In 1938 Leontovich proposed [1] a definition of the free energy of a non-equilibrium
state (see also [2, 3]). It is based on the idea that a non-equilibrium state coincides with an
equilibrium state in the presence of a proper external field. In this approach non-
equilibrium free energy differs from an equilibrium one by a Legendre transformation.
Leontovich shows that this free energy satisfies the necessary conditions: in the
equilibrium it coincides with the equilibrium potential, has minimum and defines
probability of non-equilibrium states entering the Boltzmann formula (as an effective
Hamiltonian).

In 1937 Landau elaborated [4] a theory of phase transitions of the second kind. In fact
his theory is based on a non-equilibrium thermodynamic potential. However Landau did
not discussed in [4] a fundamental definition of this potential. Applying his theory to
paramagnetic <> ferromagnetic phase transition, he constructed [5] a non-equilibrium
thermodynamic potential by a Legendre transformation as the Leontovich definition
suggests. It was done without any discussion. However, in the last edition of his course [6]
he proposed a definition of an effective Hamiltonian. But this definition was not elaborated
by him.

In the present paper we discuss in detail the Leontovich definition for weak non-
equilibrium states. The obtained results are applied to calculating the Gibbs
thermodynamic potential for a magnetic system, which is described by its total magnetic
dipole moment and equilibrium phonon subsystem temperature representing the motion of
dipoles of the system. The problem is considered with an accuracy that is enough for a
comparison with Landau theory of phase transitions of the II kind.

A part of this work will be presented in International Young Scientist Forum on
Applied Physics and Engineering (10-14 October 2016, Kharkiv, Ukraine) [7].

The paper is organized as follows: in Sec. 2 the Leontovich definition of the non-
equilibrium free energy is discussed and applied for a case of the weak non-equilibrium
states, in Sec. 3 the Gibbs non-equilibrium potential for a magnetic system is calculated.

2. The Leontovich definition of the non-equilibrium free energy
Let a non-equilibrium state of the considered system is described with a temperature
T and mean value m, of some microscopic quantities 1, (a is a parameter number;

functions f(X) of the phase variables X are denoted hereafter as f ).

An example of such system is given by a system of magnetic dipoles in a crystal
body. The motion of the dipoles can by described in terms of phonons. We will assume
that the phonon subsystem is in an equilibrium state with temperature7 . The total
magnetic moment of the system m, describes a non-equilibrium state of the system.

Our work is based on the Leontovich idea, according to which it is possible to
choose auxiliary field U (1) depending on parameters 1, so that the considered non-

equilibrium state is equilibrium in this field [1-3]. In other words, it is assumed that the
Gibbs distribution gives in this situation a non-equilibrium distribution function that can
be compared with one given by the Bogolyubov reduced description method (see, for
example, [7]). So, quantities T, 1, are reduced description parameters.

The external field is adjusted in such a way that the relation holds

n, =Spwm, (Sp...=[dX...) (1)
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Non-equilibrium Gibbs thermodynamic potential of a magnetic system

here w(m) is the canonical Gibbs distribution for the system

w(n) =exp T

Here H is the Hamilton function of the system and F() is its free energy of the

equilibrium state in the presence of the field..
According to Leontovich [1-3] the non-equilibrium free energy of the system is given
by the relation

Fo)=F)-UM)  (UM)=SpwmUM)) 3)

where U(n) is mean energy of the field.
Expression (3) corresponds to the definition of non-equilibrium system entropy S(1)

given in [8] in the framework of the Bogolyubov reduced description method. Really, in
[8] the starting point of the entropy definition is the Gibbs formula

S() ==Spw(mlnw(m) = (EM+UM)~F)/T  (EmM)=Spw(H ) “)

where E(1) is internal energy of the non-equilibrium system. So, definition (5) and the
Leontovich formula (3) give

F, (M) =EM)-TS(n) (5)

that obviously corresponds to the common idea about relation of non-equilibrium free
energy, internal energy and entropy.

Further, Leontovich showed [1-3] that it is possible to restrict ourselves by external
field of the form

um=Y ), . (6)

where functions £, (1) describe the field intensity. One can say that in U (n) external field
h,(n) is switched through microscopic quantities f},. So, non-equilibrium free energy is
defined by formula
F)=F) =Y h,(mM, 7
The formula shows that F__ (1) is some thermodynamic potential for equilibrium

neq

system in an external field. Non-equilibrium free energy F,., (1) is obtained from

potential F (1) with Legendre transformation. Below we drop arguments 1, in potentials
F, F

neq according to thermodynamic habits.

In fact, non-equilibrium free energy construction with a Legendre transformation was
proposed by Landau in his theory of the phase transitions paramagnet < ferromagnet [5].
However, he avoided using the term "the non-equilibrium free energy" in his theory of the
phase transition of the second kind [6] and assumed the presence of its necessary
properties without any discussion.

Leontovich established the next properties of the non-equilibrium free energy: it turns

into equilibrium free energy F, in equilibrium [1-3], it has a minimum in the equilibrium
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Fneqmo):F ’ Fneq(n)ZFO‘ (8)
Here n,, is an equilibrium value of the parameter M, and F; is equilibrium free energy
defined by formulas
R F,—H
Mao =SPwefly:  wo=exp=——=.  Spw,=I. ©)

This is often used in the literature without reference to Leontovich.
The basic thermodynamic relation for the free energy F has a standard form

dF ==SdT - Ada;+" M,dh,+pdN . (10)

Here q; are external parameters which are defined with the system Hamiltonian H, A
are corresponding thermodynamic forces

; ~_ oH

A =SpwA,, .E—a—, (11)
a;
W is chemical potential, N is number of particles in the system (for an one-component
system). It follows from (3) that —77, is the thermodynamic force, which corresponds to
the parameter /, .
The basic thermodynamic relation for £, can be written as

dF,,, ==SdT =) Ada, =" hdn,+wiN (12)

using relations (4) and (5).
In weak non-equilibrium states the Leontovich definition can be analyzed in detail. In
these states deviations 8n, =1, —1,, of parameters 1, from their equilibrium values 1,

and external field %, are small and a perturbation theory can be applied for calculating the
introduced above quantities. It is convenient to do this using formula

F,—F

exp =F(h) (13)

(following from (2), (6), and (9)) where function F(%) is defined by

F(h)=exp(-3Y. b, /T) (F=Spw,f) (14)

and is obviously the generating function for mean values ﬁal...ﬁa . Instead of averages

ﬁu1 ..f, of products of quantities 7}, it is convenient to use the corresponding correlation

functions(n, ..M, ) which are defined by formulas

A

nal =na10 ’ ﬁalﬁaz =ﬁ_al’f\]_az+<nalnaz> 2
=My, Mo, Mo, + MM, )M, + M, NN, + MM, +

(15)
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+<nalna2na3 >

and so on with using of cyclic permutations. A generating function G(h) for

correlations (n, ..M, )

o _1 n
e =" b,y om,m,). (16)
n=2 T a...a, "T
is connected with the generating function F(#) as

F(h)=exp(-. 7N, /T +G(h)) (17)

(see, for example, [8, 9]).
In accordance with (7), this relation gives the following expression for the free
energy F

F=Fy+Y hn,-TG(h), (18)

in the form of an expansion in powers of 7, . The basic thermodynamic relation (10) gives
the formula

=(aF/aha)w, (19)

which allows (together with relations (17) — (19)) to express parameters 1, that describe
non-equilibrium state of the system through the auxiliary field

=Ny + Z( ey z wh, (MMM, ) (20)

This expansion and formulas (7) and (19) give an expression for non-equilibrium free
energy through a small field #,

1
F.  =F+— +
neq 0 2T z a u7 <nu1na2 > T2 z a u7 a3 <nulnaznu3 >

ay,a, 3 ay,a,,a,
5
8T3 . a;% “ hlll hazha3ha4 <na1na2na3na4> + O(h ) . (21)

Here and below the non-equilibrium free energy F,, is calculated with accuracy up

to the fourth order inclusive. Formula (20) can be considered as an equation for the
function h,(n) . This equation for weak non-equilibrium states is solved in a perturbation
theory in small deviations 6mn, =m,—m,, and allows transforming the expression for the
non-equilibrium free energy (21) into a series in powers of on,. The result obtained in
this way is similar to the basic assumption of the Landau theory of phase transitions of
the second kind [4].

3. The Gibbs non-equilibrium potential of a magnetic system

Let us consider a magnetic system consisting of magnetic dipoles oscillating in a
solid. Motion of the dipoles is described in terms of phonons forming an equilibrium
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subsystem. A non-equilibrium state of the system is described by its total dipole moment
m, as the reduced description parametersm,. In this case external field /, is uniform

magnetic field taken with minus —H, (because interaction is given by U= -m,H,).

In addition, it is assumed below that the system is isotropic in absence of the
magnetic field. In this case, according to the rotational invariance, the equilibrium value of
parameters m, equals to zero

my = =0 (22)
and the first correlation functions have a structure

) =28, ()= (mm,)). (mmim,) =0,

1 (23)
<”nn”nl’/nm’/ns> = E<m4>(8n16ms + 8nmsls + 6nsalm) (<m4> = <(mnmn )2> )

It allows simplifying the previous results. In particular, formula (20) gives such an
expression for the total dipole moment m, via the magnetic field H,

1 2 1 2, 4 5
m,=—H (my+—=H H (m")+O(H"). 24
" =37 W) o0 (m”)+O(H”) (24)
Therefore the free energy (21) takes the form
| 1 4y 4 6
Fpo =Fy+—H +——H +O(H (25)
neq 0 6T <m > 40T3 <m > ( )

(H*= HH, H *=(H*?). The non-equilibrium free energy has to be expressed
through the total magnetic moment m, . To do this, (24) is solved as an equation for the
function H,(m)
3T 27 T(m")
n =5 My T 204
(m?) 10 (m?)

that with formula (25) gives the necessary expression for

m,m* +0(m>) (26)

4
Fo—p 3 T e 2T

2l 4 6
neq 5 <m2> m 20 (m2>4 m +0(m’). 27

The obtained non-equilibrium free energy (27) is a function F,,, = F (T,V,N,m)
of the temperature 7', volume V, number of magnetic dipoles, N and total magnetic
moment m, . Theory of phase transitions is usually formulated at fixed temperature 7' and
pressure p because of connection with common experimental conditions. With this and in

view of the use of Gibbs thermodynamic potential that is introduced by the Legendre
transformation

D oq = Freqg t PV » (28)

it should be calculated as a function of variables T, p, N, m,. For its calculation it is

necessary to calculate the pressure with using the basic thermodynamic relation (12) that
takes the form
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dF,., =—SdT — pdV + H,dm, + udN (29)

neq

and gives
pP= _(aFneq / aV )T,m,N : (30)

Then one has to find function V (T, p, N,m) that is a reverse function for the pressure
p(Tsvs Nsm) .

The structure of the free energy as a function F (T.V,N,m) is given by the

formula
Fneq=F0+a(T,V)%2+b(T,V)Z—i+0(m6) (V=VIN) 31)
where )
a(T,V)=—" b(r.V) =N TY) (m*y =Ny (T,V) (32)

T2y, (1Y) 40y,(T.V)*’
that can be proved on the basis of the principle of spatial correlation weakening (see, for
example, [8]). Formulas (30) and (31) allow calculating the function V (T, p, N,m)

2

4
V=Vo+e(T,p) i+ d (T, p)

F+0(m*") 33)

where V), is an equilibrium volume and
aaj (apojl (abj (aza] 1 z[azp()] (apojl
C=| —= -— . d=|| — +C| —=5 ——C = - .
[av AoV ), v ), \av?) 2" lav?) \\av ), (34)

In this expression p, (T,V)is an equilibrium pressure and a substitution V- \70 (T, p) is

assumed.
Simple calculations based on formulas (28), (31), and (33) give the final expression
for the non-equilibrium Gibbs potential

2
m

4
Py, (T, pom N) =y + (T, p) " +BIT, p)%+ O(m®) (35)

where it is denoted

a=aTVy(T.p) (9,=P,/N);
1) 1 ,(d% d%a . (abj (36)
Ed _,-(.) - 2 _~0 - — ~A5 _V -~ b.
P (avJTJrzC (avzl C(avz v ), T

Here &, is an equilibrium Gibbs potential and a substitution 1% —>170(T, p) in B is
assumed. Note that corrections of the second order in m, for the free energy (31) and the
Gibbs potential (35) are equal. This is a consequence of the general theorem proved in

[6].
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This expression is similar to one which is a basis of the Landau theory of phase
transitions of the second kind paramagnet <> ferromagnet (see, for example, [5, 6]).
However the coefficient in (35) at m”® is positive in contradiction with the Landau
assumption. We suppose that this contradiction is a consequence of our assumption about
the system isotropy that is broken in magnetic systems at some temperatures.

4. Conclusions

In this paper on the basis of the Leontovich definition of the non-equilibrium free

energy the Gibbs non-equilibrium thermodynamic potential is built for weak non-
equilibrium states of a magnetic system. In understanding of this definition, it is very
important to explain the meaning of the temperature. We consider a system of moving
magnetic dipoles, so the subsystem that describes their motion (for example, phonon
subsystem) is assumed to be in equilibrium with the mentioned temperature.
In calculations we restrict ourselves by non-equilibrium potentials obtained with accuracy
up to the fourth order terms in the small total magnetic moment of the system inclusive.
In this way we try to justify the phenomenological Landau assumption concerning the
thermodynamic potential used in his theory of the phase transitions of the II kind. In the
present paper the thermodynamic Gibbs potential, which does not meet the Landau
requirements, is constructed. Our explanation of this contradiction connects it with our
assumption about anisotropy of the considered system that is false below the Curie point.
In this situation equilibrium averages (in the absence of the magnetic field) should be
considered as the Bobolyubov quasi-averages (see, for example, [10]). In a subsequent
paper we will discuss this idea in details.
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