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CONSERVATION LAWS BASED ON THE NONLOCAL COLLISION 

INTEGRAL IN THE CASE OF SMALL INTERACTION 

The system under consideration is a weakly non-uniform one-component gas with weak potential 

interaction. The basis of this paper is the kinetic equation up to the terms of the second order in small 

potential interaction with the general nonlocal collision integral. This paper is devoted to the particle 

number, momentum and energy conservation laws. It is shown that the system particle number and 

momentum are conserved. Also it is shown that although the kinetic energy of the system is conserved 

on the basis of the local collision integral, it is not conserved on the basis of the nonlocal collision 

integral. Only the total system energy, which is the sum of the kinetic and potential energies, is 

conserved on the basis of the nonlocal collision integral. Time evolution equations for the particle 

number density, momentum density and total energy density and the corresponding fluxes are 

obtained in terms of the one-particle distribution function in the leading order in small spatial 

gradients of the one-particle distribution function. In contrast to the standard hydrodynamics based on 

the Landau kinetic equation, these fluxes contain the terms of the first and second order in small 

potential interaction. 

Keywords: weak potential interaction, small gradients, nonlocal collision integral, conservation laws, 

total energy flux, momentum flux.   

1. Introduction 

In this paper we consider a one-component weakly non-uniform gas with small 

potential interaction. Usually the hydrodynamics of a system is built on the basis of the 

local collision integral (see, for example, the investigation of hydrodynamics of a 

granular system on the basis of the Boltzmann kinetic equation [1] and plasma 

hydrodynamics on the basis of the Landau kinetic equation [2]). The system distribution 

function is obtained up to the first order in small gradients, and the kinetic coefficients of 

the system are obtained. However, the Burnett approximation (i.e. the theory of the 

second order in small gradients) meets difficulties [3], the results of the Burnett 

approximation may not refine the results of the first order in small gradients.  

Maybe, these difficulties can be overcome on the basis of the nonlocal collision 

integral. The local collision integral is the collision integral in terms of the one-particle 

distribution function only in the leading order in gradients. So, some terms can be lost 

during the investigation of system hydrodynamics in higher-than-the-leading orders in 

gradients. Thus the problem of hydrodynamics investigation on the basis of the nonlocal 

collision integral is an important one. This paper is based on the kinetic equation up to the 

second order in small potential interaction with the general nonlocal second-order 

collision integral [4, 5]. The particle number, momentum and energy conservation laws 

are investigated in a perturbation theory in small interaction and in small gradients of the 

one-particle distribution function. It is shown that although the system kinetic energy is 

conserved on the basis of the local collision integral, it is not conserved on the basis of 

the nonlocal collision integral. The total energy, which is the sum of the kinetic and 

potential energies, is conserved on the basis of the nonlocal collision integral. So the 

system total energy should be used as a reduced description parameter instead of the 

system kinetic energy and the temperature definition should be based on the equilibrium 

expression for the total system energy density.                    
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As known, the expressions for the fluxes of the conserved quantities in terms of the 

one-particle distribution function are very important for the investigation of system 

hydrodynamics. In this paper the particle number, momentum and energy flux densities 

are obtained in the leading order in small gradients. 

The obtained results can be the basis of further investigation of system 

hydrodynamics with the nonlocal collision integral with the help of the Chapman–Enskog 

method. As is known, the consistent hydrodynamics of the Landau–Vlasov kinetic 

equation meets difficulties [6]. Maybe, these difficulties can be overcome on the basis of 

the proposed approach. The proposed approach may also be generalized to the case of 

dissipative systems in an external random field [5, 7–9].  

The paper is organized as follows. In Sec. 2 the conservation laws are investigated, 

and in Sec. 3 the corresponding fluxes are obtained. 

2. Particle number, momentum and energy conservation laws 

The paper is based on the kinetic equation in the case of small potential interaction 

up to the second order in small interaction [4]: 
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where (| |)V x  is the pair system potential, ( , )f tχ  is the one-particle distribution 

function, and 
1( , )I fχ  is the general nonlocal second-order collision integral. 

The definitions of the particle, momentum and kinetic energy densities in terms of 

the one-particle distribution function are standard ones: 

( , ) ( , )n t d f t= χ∫x p , ( , ) ( , )n nt d p f tπ = χ∫x p , 
2

kin ( , ) ( , )
2

p
t d f t

m
ε = χ∫x p . (2) 

So, the expressions for the system particle number, momentum and kinetic energy are 

( ) ( , )N t d f t= χ χ∫ , ( ) ( , )t d f t= χ χ∫Π p , 
2

kin ( ) ( , )
2

p
E t d f t

m
= χ χ∫ . (3) 

The exact expression for the system potential energy is given in [4]: 

pot 1 2 2 1 2 12

1
( ) ( , , ( ))

2
E t d d f f t V= χ χ χ χ∫  (4) 

where 
2 1 2( , , )f fχ χ  is the two-particle distribution function at the kinetic stage of the 

system evolution. 

The time evolution equation for the quantities (2), (3) can be obtained on the basis of 

the kinetic equation (1). Note that we restrict ourselves to the terms of the second order in 

small potential interaction because the kinetic equation (1) is obtained up to the second 



Conservation laws based on the nonlocal collision integral in the case of small interaction 

16 

 

order. Obviously we have ( ) 0t N t∂ =  because the integral of the divergence is equal to 

zero. For the momentum time evolution equation after integrating by parts we have 

(1) (2)

1 2 1 2 12 1( ) ( ) ( ) ( )t n t n t n nd d f f V x∂ Π = ∂ Π + ∂ Π = − χ χ χ χ ∂ ∂ −∫
0
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∫ ∫ ,  

(5) 

here and in what follows, the superscript in parentheses denotes the order in small 

potential interaction (the dimensionless small parameter is denoted by λ ). 

On the basis of the Fourier transform 
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12 (2 ) ( )
i

V d e V k
−−= π ∫

k x x
k ,   | |k ≡ k   (6) 

we obtain 

( )1 2(1) 3

1 2 1 2( ) (2 ) ( ) ( ) ( ) {1 2}
i

t n ni d d d f f k e V k
−−∂ Π = − π χ χ χ χ = ↔ =∫

k x x
k

( )1 23

1 2 1 2(2 ) ( ) ( ) ( ) { }
i

ni d d d f f k e V k
− −−= − π χ χ χ χ = → − =∫

k x x
k k k  

( )1 23 (1)

1 2 1 2(2 ) ( ) ( ) ( ) ( )
i

n t ni d d d f f k e V k
−−= π χ χ χ χ = − ∂ Π∫

k x x
k  , 

(7) 

so (1)
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( )t n∂ Π  we have 
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which after integrating by parts gives 

( )( )1 2(2) 6

1 2 1 2( ) 2 (2 ) ( ) ( ) ( ) ( )
i

t n n l li d d d d V k V k k k k f f e
′+ −− ′ ′ ′ ′∂ Π = π χ χ χ χ ×∫

k k x x
k k

( )1 2

0
i m

d e
m

τ −

−∞

τ
× τ∫

k p p
. 

(9) 

With the help of a trick similar to (7) it can be shown that the integral (9) is equal to zero, 

so the system momentum is conserved on the basis of the general second-order nonlocal 

collision integral. 

Similarly, we can obtain the time evolution equation for the kinetic energy: 
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The system is assumed to be weakly non-uniform on the scale of the radius of particle 

interaction, so we can expand 
2( )f χ  into a series in 

2 1−x x : 

2

1 2 1 2

2 1 2 21 21 21

1 1 1

( , ) ( , )1
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21 2 1≡ −x x x , (11) 

the corresponding dimensionless small parameter that describes the smallness of 

gradients of the one-particle distribution function is denoted by g . On the basis of (11) 

and the integrals (24) and (25) from Appendix with the help of the trick (7) and 

integrating by parts one can obtain that 
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here and in what follows, ( , )n mA denotes the contribution of the order n m
gλ  to a quantity 

A . The zeroth order in gradients for 
kint E∂  is calculated on the basis of the first term on 

the right-hand side of (11), i.e. it corresponds to the local collision integral. So the system 

kinetic energy is conserved on the basis of the local collision integral. It is the well-

known result (see, for example, [2]). However, (1,1)

kin( ) 0t E∂ ≠  and (2,1)

kin( ) 0t E∂ ≠ , so the 

kinetic energy of the system is not conserved on the basis of the nonlocal collision 
integral. Thus if we want to investigate the hydrodynamics on the basis of the nonlocal 

collision integral, we should not use the kinetic energy as a reduced description parameter 

of the system – we need another reduced description parameter. 
By a similar procedure on the basis of the definitions (3), (4) and on the basis of the 

following expression for the two-particle distribution function [4] 
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(13) 

it can be shown that up to the second order both in small interaction and in small 
gradients the system total energy is conserved on the basis of the nonlocal collision 

integral: 

0t E∂ = , kin potE E E= + . (14) 

Thus the following reduced description parameters for the hydrodynamics investigation 
should be used: the particle density, the momentum density, and the total energy density. 

The definitions of the particle density and the momentum density are given by (2); on the 

basis of (3) and (4) the definition of the total energy density ε  is 

2

1
1 1 1 1 2 2 1 2 12( , ) ( , ) ( , , ( ))

2

p
t d f t d d f f t V

m
ε = χ + χ χ χ∫ ∫x p p . (15) 

In what follows, we need expressions for the corresponding fluxes. 
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3. Particle number, momentum and total energy fluxes  

This section is devoted to the obtaining of the particle number, momentum and total 

energy flux densities. In this paper we restrict ourselves to the leading approximation in 

small gradients. 

The time evolution equations for the particle, momentum and total energy densities 

can be obtained on the basis of the definitions (2), (15), the kinetic equation (1), and the 
expressions (13). Here we restrict ourselves to the second order in small interaction. For 

the particle density we obviously have 

1
( , ) n

t

n

n t
m x

∂π
∂ = −

∂
x , (16) 

so the continuity equation is the same both for the local and the nonlocal collision 
integrals. For the momentum density one can obtain 
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(17) 

Here (0)

1( ( , ))t n t∂ π x  coincides with the known expression in the framework of standard 

hydrodynamics based on the Landau kinetic equation with the local collision integral.  
With the help of the expansion (11) one can transform other terms in (17). As a 

result, for (1)

1( ( , ))t n t∂ π x  we obtain 

(1,0) (1,2)( ) ( ) 0t n t n∂ π = ∂ π = ,             
2

(1,1)

1

1

1
( ( , )) ( 0)

2
t n

n

n
t V k

x

∂
∂ π = − =

∂
x . (18) 

As known, the momentum conservation law in differential form is 

1 1( , )t n nl lt t x∂ π = − ∂ ∂x  (19) 

where 
nlt  is the momentum flux density. So, in the first order in small interaction we have 

(1) 2 2( 0) 2 ( )nlt V k n O g= = + . (20) 

As can be seen, (1)

nlt  does not contain terms linear in g . As known, the kinetic 

coefficients are the proportionality coefficients between the fluxes in the linear order in 

g  and the gradients. So, the Vlasov term (i.e. the term in the kinetic equation that is of 

the first order in small interaction) has no effect on the kinetic coefficients related to (1)

nlt . 

This fact justifies our result because, as known [10], the Vlasov term is not important for 

the calculation of system kinetic coefficients. 

For (2)

1( ( , ))t n t∂ π x  one can obtain the following: 
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So, we have the following expression for 
nlt : 
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By a similar procedure, one can obtain the total energy flux density: 
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(23) 

Only the first term on the right-hand side of (23) coincides with the corresponding 

expression of standard hydrodynamics on the basis of the Landau kinetic equation with 

the local collision integral, the other terms come from accounting for the Vlasov term and 

the non-locality of the collision integral. Also note that the Vlasov term does not lead to 

contributions to (23) linear in g . So, the Vlasov term has no effect on the system kinetic 

coefficients related to the energy flux 
nq , which justifies our result according to [10].    

The expressions for the fluxes in terms of  the one-component distribution function 

are very important for the investigation of hydrodynamics. Here we restrict ourselves 

only to the leading-in- g  terms in the fluxes. The linear-in- g  terms can also be obtained 

on the basis of the above-described procedure, but this will be made in another paper. 

4. Conclusions 

This paper is devoted to the investigation of conservation laws and to the calculation 

of the corresponding fluxes on the basis of the nonlocal collision integral. The system 

under consideration is a one-component weakly non-uniform gas (small parameter g ) 

with small potential interaction (small parameter λ ). Only the pair collisions between the 

system particles are taken into account. 
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The kinetic equation for the considered system is known in the literature [4]. It 

contains the nonlocal collision integral in the considered orders λ  and 2λ . All the 

calculations are made up to the second order in λ . 

First of all, the conservation laws in the system are investigated. It is known that the 

momentum and the particle number of the system are conserved on the basis of the local 

Landau collision integral. Here it is shown that these quantities are also conserved on the 

basis of the nonlocal collision integral.  

It is also known that the system kinetic energy is conserved on the basis of the local 

Landau collision integral. But here it is shown that the kinetic energy of the system is not 

conserved on the basis of the nonlocal collision integral, and the time evolution equation 

for the system kinetic energy is obtained (10), (12). It is shown that only the total system 

energy is conserved on the basis of the nonlocal collision integral; it is conserved up to 

the second order both in the small parameter g  and in the small parameter λ . The total 

system energy is the sum of the kinetic and the potential energies. 

So, we should use the following set of the reduced description parameters in order to 

build the system hydrodynamics: the particle density, the momentum density, and the 

total energy density. Expressions for the corresponding flux densities in terms of the one-

particle distribution functions are necessary for further development. 

It is shown that the continuity equation (16) coincides both for the local and the 

nonlocal collision integrals. The momentum flux density and the total energy flux density 

are obtained in terms of the one-particle distribution function (22), (23). The leading-in-

interaction terms of these fluxes coincide with the corresponding fluxes of standard 

hydrodynamics based on the local Landau collision integral. But the other terms are the 

corrections which come from taking into account the Vlasov term and the non-locality of 

the collision integral. It should be stressed that the Vlasov term does not give linear-in-

gradients terms to the fluxes. This fact justifies our result because, as is known, the 

Vlasov term has no effect on the system kinetic coefficients. 

Here we have restricted ourselves only to the leading-in-gradients terms in the 

fluxes. Of course, the linear-in-gradients terms for the fluxes are also of great interest 

because they are connected with the system kinetic coefficients. They can be obtained by 

the procedure described in this paper.  

The fluxes in higher-than-the-leading orders in gradients will be obtained and the 

system hydrodynamics will be investigated on the basis of the Chapman–Enskog method 

in another paper. The results of this paper can be a basis for such an investigation. 
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Appendix. Some useful integrals. 

The integrals over 
2x : 
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